1. GENERAL INFORMATION

<table>
<thead>
<tr>
<th>1.1 Course teacher</th>
<th>Prof. Ana Lončarić Božić, PhD</th>
<th>1.6 Year of the study</th>
<th>2 (3rd semester)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assist. Prof. Davor Dolar, PhD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Name of the course</td>
<td>Advanced Water Treatment Technologies</td>
<td>1.7 ECTS credits</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Associate teachers</td>
<td>Josipa Papac, mag. ing. oecoing. Marko Racar, mag. ing. cheming.</td>
<td>1.8 Type of instruction (number of hours L + E + S + e-learning)</td>
<td>Total: 60 (L:30, E:30, S:0)</td>
</tr>
<tr>
<td>1.4 Study programme (undergraduate, graduate, integrated)</td>
<td>graduate</td>
<td>1.9 Expected enrolment in the course</td>
<td>10</td>
</tr>
<tr>
<td>1.5 Status of the course</td>
<td>☑ mandatory ☒ elective</td>
<td>1.10 Level of application of e-learning (level 1, 2, 3), percentage of online instruction (max. 20%)</td>
<td>2</td>
</tr>
</tbody>
</table>

2. COURSE DESCRIPTION

2.1. Course objectives
To introduce students to advanced technologies for water purification and wastewater treatment, and to develop understanding of related challenges and opportunities. To adopt specific theoretical knowledge and practical skills related to the characteristic radical reactions and mechanisms, reactor systems and operating process parameters.

2.2. Enrolment requirements and/or entry competences required for the course
Environmental engineering, Remediation technology

2.3. Learning outcomes at the level of the programme to which the course contributes
- Utilise advanced laboratory procedures and instruments for synthesis of new products, create sustainable processes, and solve problems of water, air and soil pollution.
- Apply different analytical techniques, analytical and numerical methods, as well as software tools in creative problem solving of engineering challenges, proposing sustainable technological solutions.
- Optimise complete and sustainable technological processes using analysis and modelling aimed at waste minimization utilising the strategy of the closed cycle manufacturing.
- Independently organise and plan timelines, apply a general methodology for project planning and management in a business environment.
- Create a critical analysis, evaluation and interpretation of personal results, and compare them with existing data in scientific and expert literature.
- Outline results of independent and teamwork in a written and oral form to non-experts and experts in a clear and coherent way.
- Communicate with the scientific and professional community, as well as society in general in local and international surroundings.
2.4. Expected learning outcomes at the level of the course (3 to 10 learning outcomes)

- Explain means and materials for membrane preparation, and how to to characterize membranes
- Define types of membrane operations and design membrane systems
- Explain the principles of pressure membrane processes
- Select membranes for specific purposes and to test their main characteristics
- Discuss characteristics of different types of advanced oxidation processes
- Analyse influence of process parameters on efficiency of water treatment by advanced oxidation processes
- Correlate degradation mechanisms of water pollutants with biodegradability and toxicity changes
- Assess inhibitory effect of water matrix in practical application of advanced oxidation processes.

2.5. Course content (syllabus)

WEEK 1. Introductory lecture: water in general; membrane processes in general

WEEK 2. Classification of membranes; characterization of membranes

WEEK 3. Pressure membrane processes; membrane modules

WEEK 4. Design of membrane processes; seminar tasks

WEEK 5. Examples of membrane systems design; desalination

WEEK 6. Fouling; electrochemical membrane processes; membrane bioreactor

WEEK 7. Partial exam

WEEK 8. Classification and main characteristics of advanced oxidation processes; degradation of water pollutants by OH radical mechanism

WEEK 9. Homogeneous and heterogeneous Fenton type processes, UV/Fenton

WEEK 10. Ozonation

WEEK 11. Catalytic ozonation, perozone process

WEEK 12. Photolysis, photooxidation processes

WEEK 13. Photocatalytic processes

WEEK 14. Hybride processes

WEEK 15. Partial exam

2.6. Format of instruction:

- ☒ lectures
- ☐ seminars and workshops
- ☒ exercises
- ☒ online in entirety
- ☐ partial e-learning
- ☐ field work
- ☐ independent assignments
- ☐ multimedia and the internet laboratory
- ☐ work with mentor
- ☐ (other)

2.7. Comments:

2.8. Student responsibilities

Attendance and participation in lectures (75% min) and lab (100%). Written laboratory reports.
2.9. Monitoring student work

<table>
<thead>
<tr>
<th>Task</th>
<th>YES</th>
<th>YES</th>
<th>NO</th>
<th>Oral exam</th>
<th>YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class attendance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental work</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Essay</td>
<td>NO</td>
<td></td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Preliminary exam</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>NO</td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

ECTS credits (total): 5

2.10. Required literature (available in the library and/or via other media)

<table>
<thead>
<tr>
<th>Title</th>
<th>Number of copies in the library</th>
<th>Availability via other media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course materials prepared by the course teacher, available through the course website.</td>
<td></td>
<td>www.fkit.unizg.hr</td>
</tr>
</tbody>
</table>

2.11. Optional literature

<table>
<thead>
<tr>
<th>Title</th>
<th></th>
</tr>
</thead>
</table>

2.12. Other (as the proposer wishes to add)