Name of the course	Principles and applications of fluorescence spectroscopy
Number of instruction hours	20
Outline of course/module	Primary processes in photophysics (absorption of electromagnetic radiation,
content	electronic transitions, excited states, radiation and radiationless deactivation processes, Jablonski diagram, quantum yields).
	Principles and instrumentation of steady state and time resolved fluorescence spectroscopy.
	Experimental methods in photophysics (time resolved absorption spectroscopy, lifetimes).
	Influence of solvent polarity to the deactivation from the excited state, complexes in the excited state (excimers, exciplexes, electron transfer).
	Fluorescence quenching (theory and applications).
	Resonance energy transfer (theory and applications).
	Fluorescence polarization (theory and applications).
	Photochemical reactions of proton transfer.
	Application of fluorescence spectroscopy in biochemistry and biology.
	Fluorescent sensors.
Description of instruction methods	Lectures, seminars, tests and consultations.
Description of course/module requirements	Written (seminar paper) and oral exam.