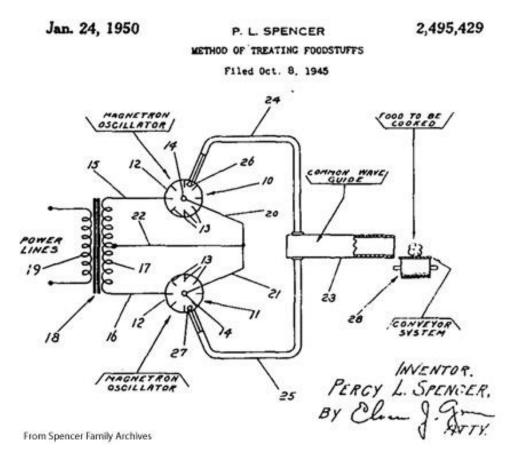
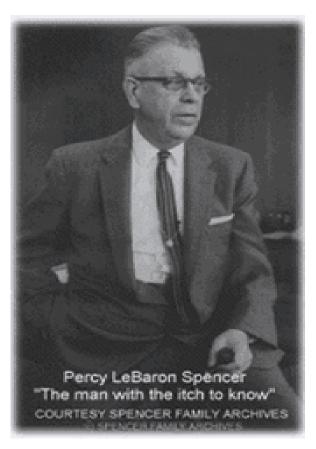
University of Zagreb Faculty of Chemical Engineering and Technology Study programme Chemical and Environmental Technology


MICROWAVE ASSISTED CHEMISTRY MICROWAVE THEORY

Prof. Marijana Hranjec, PhD

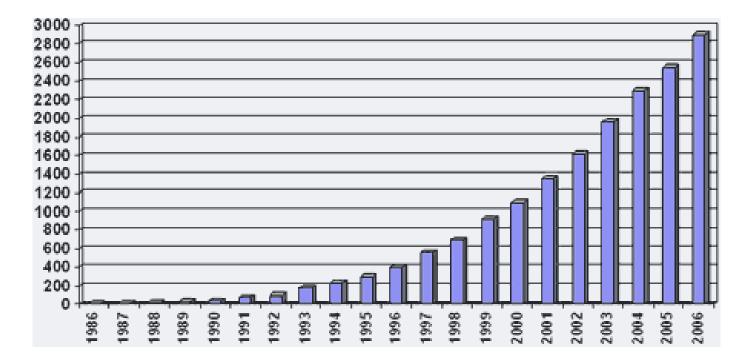
Academic year 2024/2025

INTRODUCTION – historical overview


- 1946. original patent by P. L.
 Spencer 1947
 the first commercial microwave
- oven 1955
- home microwave
- In 1976, more than 60% of households in the United States owned a home microwave oven

- microwave techniques are developing rapidly during II. World War, especially for military purposes (navigation, radar, communication)
- In the 1980s, the global increase in the use of microwave ovens

INTRODUCTION – historical overview

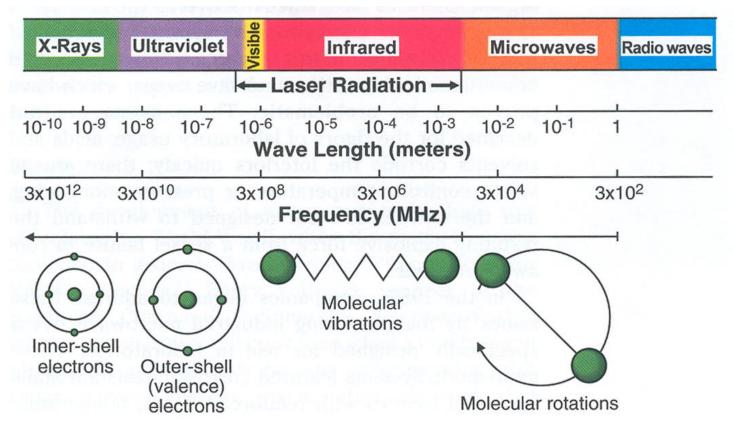

P. L. Spencer

first commercial microwave

In the last two decades it has been used intensively in organic site; over 3500 published scientific publications

In 1986, the first publication describing the use of microwaves in organic synthesis was published

flammability of organic compounds and lack of temperature and pressure control - main problems the first experiments in home microwave ovens

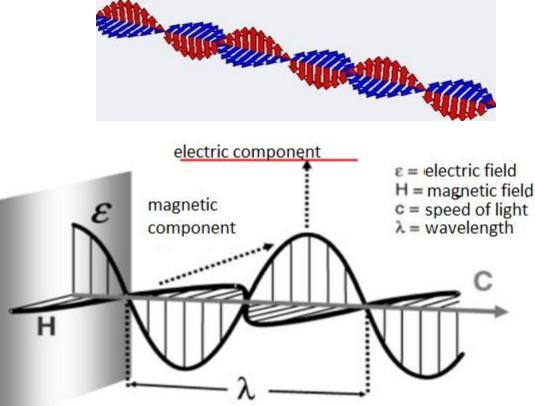

* "Application of commercial microwave ovens to organic synthesis" Giguere, R. J., Majetich, G. *Tetrahedrom Letters* 1986, 27, 4945.

* "The use of microwave ovens for rapid organic synthesis" Gedye, R. N. Tetrahedron Letters 1986, 27, 279.

classical synthesis: 16 h (90%) MW synthesis: 4 min (93%)

electromagnetic radiation of frequency 0.3 - 300 GHz

between the infrared region and the radio wave region

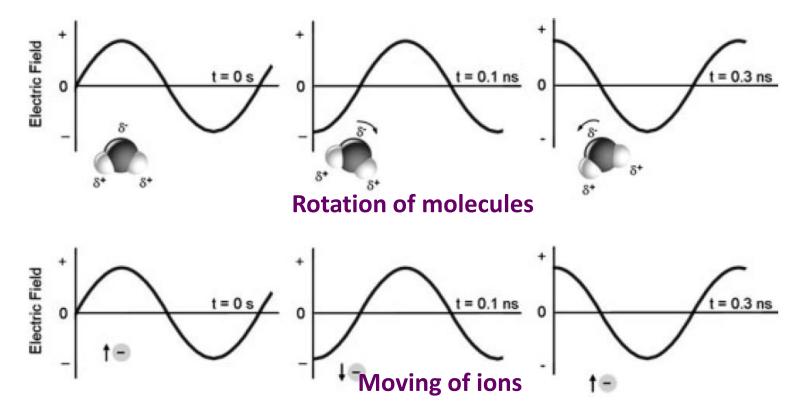

2.45 GHz microwave radiation is most commonly used in household and chemical use

- microwave radiation is generated by dipole polarization or conduction mechanisms
- photons of MW radiation have low energy insufficient to break chemical bonds

Type of radiation	frequency (MHz)	quantum energy (eV)	Type of bond	Bond energy (eV)
gama rays	3.0×10^{14}	1.24×10^{6}	C-C	3.61
X-rays	3.0×10^{13}	1.24×10^{5}	C=C	6.35
ultraviolet	1.0×10^{9}	4.1	C-O	3.74
visible light	6.0×10^{8}	2.5	C=O	7.71
infrared light	3.0×10^{6}	0.012	C-H	4.28
microwaves	2450	0.0016	O-H	4.80
radio frequency	1	4.0×10^{-9}	hydrogen bond	0.04-0.44

★ solvents play a major role in the absorption of MW radiation (polar solvents with dipole moment and high dielectric constant - water, DMF, CH₂Cl₂)
 ★ solvent absorption power - tan δ

MW radiation - electromagnetic radiation - electrical and magnetic component
 electrical component (E) of MW radiation is responsible for the interaction with matter

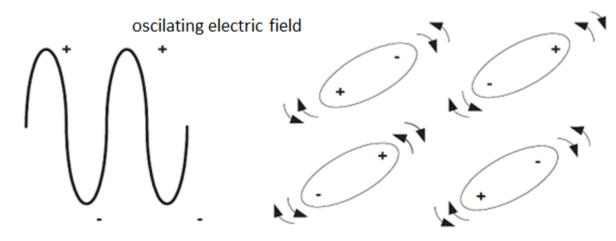


2.45 GHz = 12.25 cm

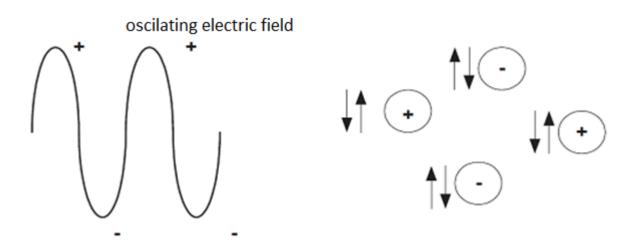
The E field causes heating by dipole polarization (dipole rotation) or conduction mechanism (ionic conductivity)

it induces polarization within matter

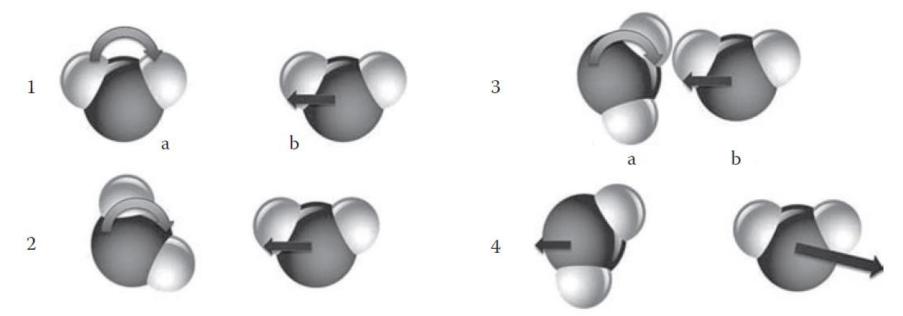
Mechanism of dipole polarization and ionic conductivity:



in order for matter to be able to absorb energy, it must have a dipole moment


 the E field stimulates the rotation of molecules, but their motion is not fast
 enough and rapid changes in the E field they do not follow - the decay of EM
 radiation into thermal energy

free ions tend to follow the direction of motion of the E field


Mechanism of dipole polarization :

Mechanism of ionic conductivity:

Mechanism of dipole polarization :

- 1-2: molecules rotate under the influence of MW radiation
- 3: due to the mutual influence, the rotational energy of the molecule is converted into translational motion
- 4: increasing the magnitude of the translation vector leads to an increase in kinetic energy

Dipole polarization - an interaction during which polar molecules try to follow the direction of the alternating E field and its strength depends on the polarity of the molecules and their ability to follow the change of the E field

Ionic conductivity - occurs when free ions or ionic species are present in the medium and under the influence of MW radiation their movement occurs by the action of an alternating E field

Dielectric properties of matter

dielectric constant ε' – ability of molecules to be polarized under the influence of E fields - molecules with high dipole moment dielectric loss ε " - the amount of MW of energy that is dissipated into thermal energy tanges of loss tan δ - the ability of matter to convert EM energy into heat energy at a certain frequency and temperature (tan $\delta = \varepsilon$ " / ε ')

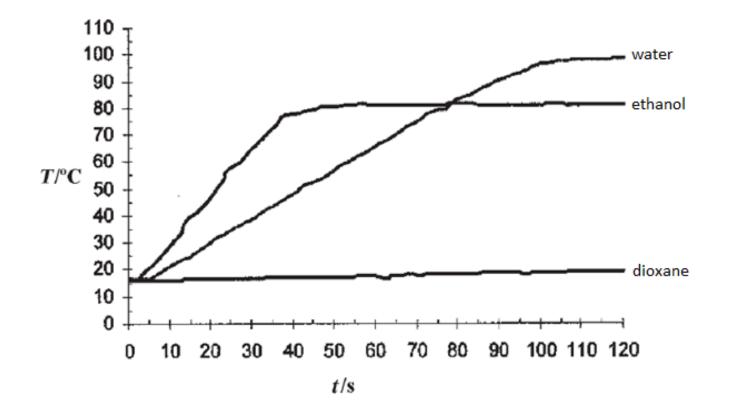
- for a very high ability to absorb MW radiation as well as rapid heating the reaction medium must have a high tan δ
- \bigstar tan δ is frequency and temperature dependent
- Iow tan δ solvents can also be used in MW-assisted reactions reactants and catalysts can increase the overall dielectric properties polar additives - alcohols, ionic solutions

Debyeev relacsation theory:

$$\varepsilon' = \varepsilon_{\infty} + \frac{\varepsilon_0 - \varepsilon_{\infty}}{1 + \varpi^2 \tau^2} \qquad \varepsilon'' = \frac{(\varepsilon_0 - \varepsilon_{\infty}) \, \varpi \tau}{1 + \varpi^2 \tau^2} \qquad \tau \approx \frac{3V \, \eta}{kT}$$

Tanges of loss for some solvents:

Solvent	$\tan \delta$	Solvent	$tan\delta$
Ethylene glycol	1.350	N,N-dimethylformamide	0.161
Ethanol	0.941	1,2-dichloroethane	0.127
Dimethylsulfoxide	0.825	Water	0.123
2-propanol	0.799	Chlorobenzene	0.101
Formic acid	0.722	Chloroform	0.091
Methanol	0.659	Acetonitrile	0.062
Nitrobenzene	0.589	Ethyl acetate	0.059
1-butanol	0.571	Acetone	0.054
2-butanol	0.447	Tetrahydrofuran	0.047
1,2-dichlorobenzene	0.280	Dichloromethane	0.042
1-methyl-2-pyrrolidone	0.275	Toluene	0.040
Acetic acid	0.174	Hexane	0.020

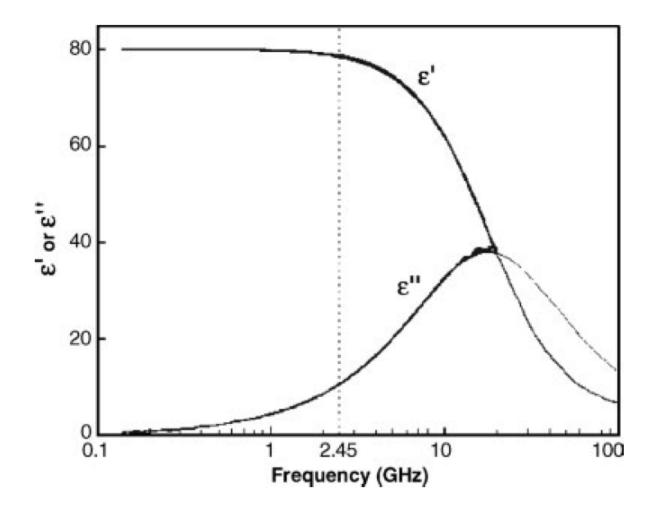

Solvents with high (tan δ > 0.5), medium (tan δ 0.1 - 0.5) and weak (tan δ <0.1) ability to absorb MW radiation

- * the higher the tan δ , the more efficiently the solvent converts MW energy into thermal energy and heats up faster
- MW permeable solvents that do not absorb MW radiation at all are dioxane, CCl₄ and benzene
- solvent boiling points are no longer so important because the action of MW radiation heats all solvents to boiling point in a few seconds

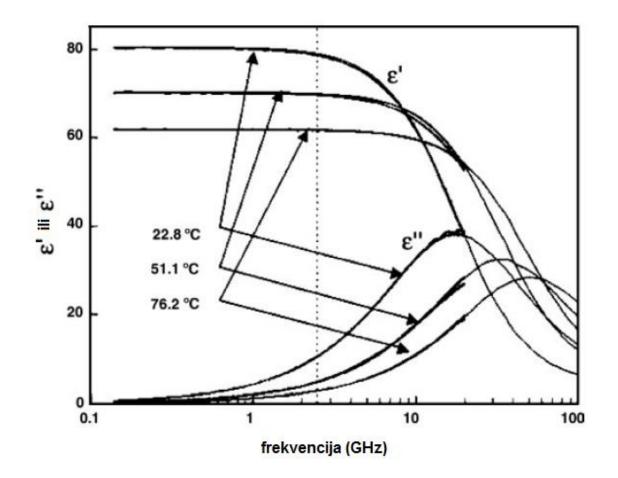
"High" (> 0.5)		"Medium" (0.1 – 0.5)		"Low" (< 0.1)	
Otapalo	Tan δ	Otapalo	Tan δ	Otapalo	Tan δ
ethylene-glycol	1,350	butan-2-ol	0,447	chloroform	0,091
		dichlorobenzene	0,280	MeCN	0,062
tOH	0,941	NMP	0,275	EtOAc	0,059
DMSO	0,825	acetic acid	0,174	acetone	0,054
oropan-2-ol	0,799	DMF	0,161	THF	0,047
omic acid	0,722	dichloroethane	0,127	DCB	0,042
1eOH	0,659	water	0,123	toluene	0,040
itrobenzen	0,589	chlorobenzene	0,101	hexane	0,020
outan-1-ol	0,571			пелане	0,020

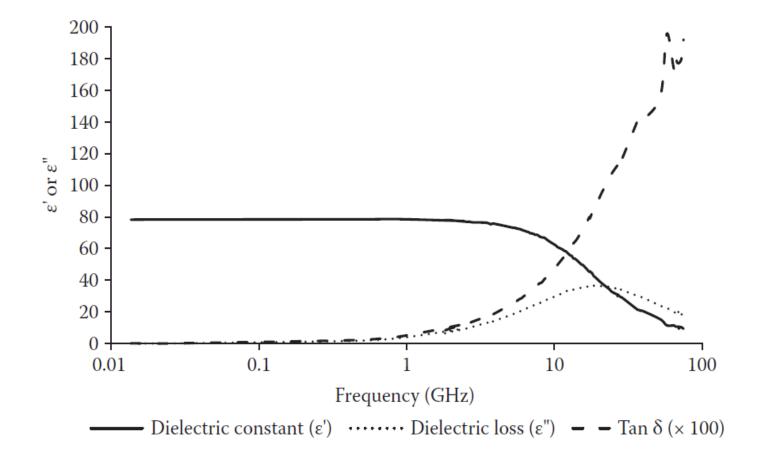
Interaction of materials with MW radiation

water, which is a medium-absorbing solvent, heats up more slowly than ethanol while dioxane does not absorb MW radiation at all



Solvent	Relaxation time τ (ps)	Dipole moment (debye)	Loss tangent at 2.45 GHz
H ₂ O	9.04	1.54	0.123
МеОН	51.5	1.70	0.659
EtOH	170	1.69	0.941
Propan-1-ol	332	1.68	0.757
Me ₂ SO	20.5		0.825
HCONMe ₂	13.05		0.161
MeNO ₂	4.51		0.064
THF	3.49		0.047
CH_2Cl_2	3.12		0.042
CHCl ₃	8.94		0.091
MeCOMe	3.54		0.054
MeCO ₂ Et	4.41		0.059
HCO ₂ H	76.7 (25°C)		0.722
MeCO ₂ H	177.4 (25°C)		0.174
MeCN	4.47		0.062
PhCN	33.5		0.459
CH ₂ OHCH ₂ OH	113 (25°C)		1.35


Solvent	Dielectric constant (ϵ_s)		
Water	80.4		
MeOH	33.7		
Me ₂ CO	21.4		
C_6H_6	2.3		


Dielectric characteristics of water as a function of frequency:

maximum heating about 18 GHz

Dielectric characteristics of water as a function of frequency and temperature: dielectric loss ε " and tanges of loss δ of pure water and most organic solvents decrease with increasing temperature

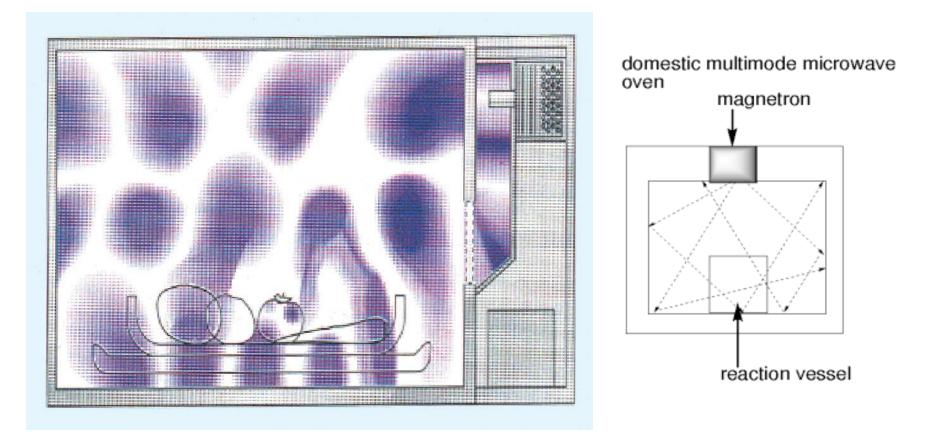
Dielectric characteristics of some solvents as a function of frequency: for polar solvents of lower molar mass, a decrease in frequency causes a decrease in the loss tangent δ

frequency	ε′	ε″	tan δ
water			
14 MHz	78.3	0.10	0.001
444 MHz	779	1.70	0.022
900 MHz	78.6	3.51	0.045
2.45 GHz	77.4	9.48	0.122
hexane-1-ol			
14 MHz	8.0	0.70	0.088
444 MHz	5.2	3.6	0.702
900 MHz	4.0	2.3	0.568
2.45 GHz	3.4	1.2	0.341
nitrobenzen e			
14 MHz	35.1	0.20	0.006
444 MHz	35.3	4.0	0.113
900 MHz	33.7	7.7	0.229
2.45 GHz	25.2	14.7	0.584
glycerol			
14 MHz	42.5	3.70	0.087
444 MHz	11.4	9.9	0.866
900 MHz	8.41	6.40	0.759
2.45 GHz	6.33	3.42	0.540

University of Zagreb Faculty of Chemical Engineering and Technology Study programme Chemical and Environmental Technology

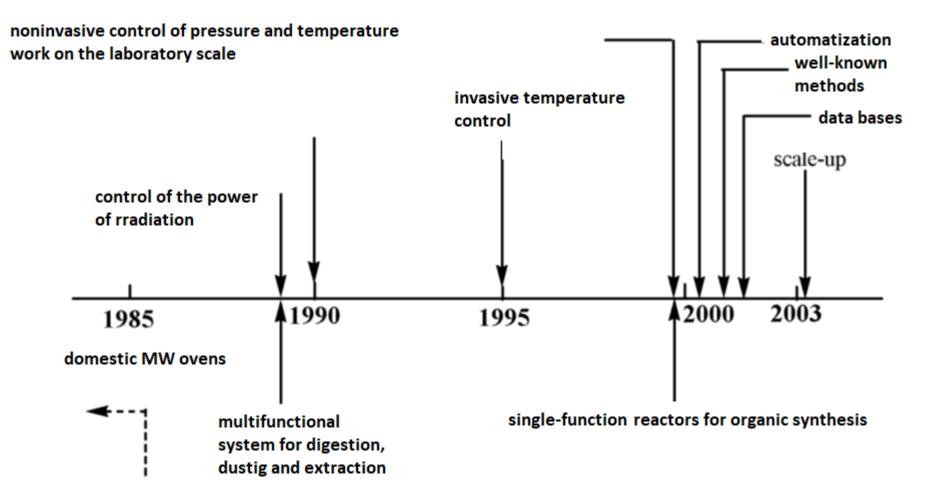
MICROWAVE REACTORS

Prof. Marijana Hranjec, PhD

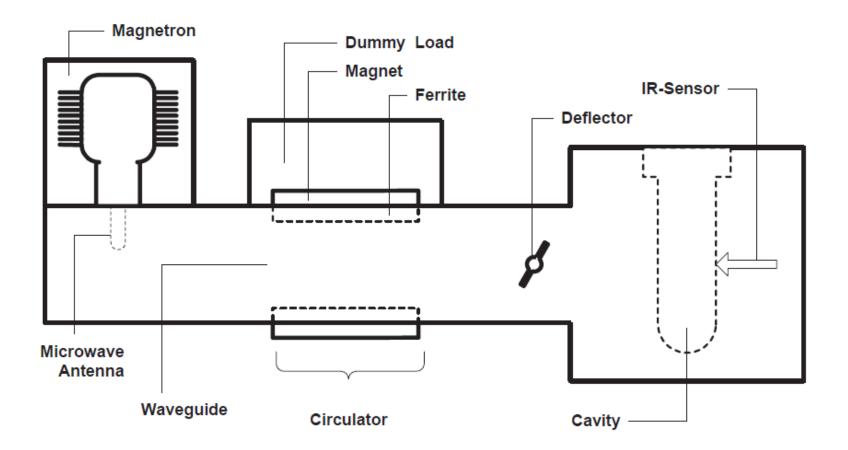

Academic year 2023/2024

 the first experiments were conducted in home microwave ovens but the reproducibility of such results was very low
 the main disadvantages were the variable radiation power, the inability to measure pressure and temperature and mixing of the reaction mixture, the inhomogeneity of the electromagnetic field, large temperature differences inside the housing, the inability to control safety and the possibility of explosion

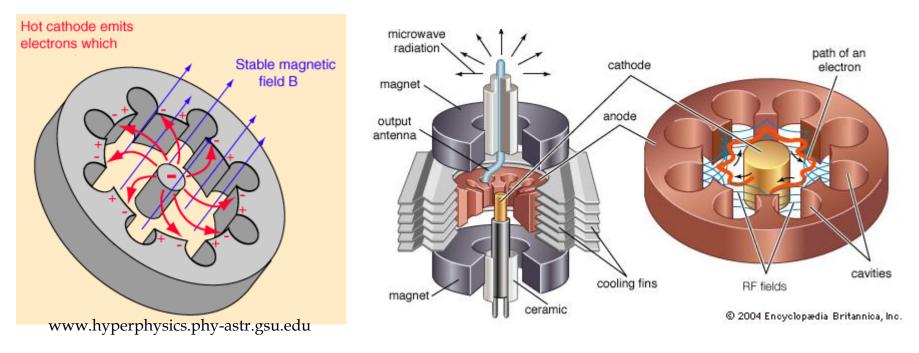
In the second second


Type of microwave reactors:

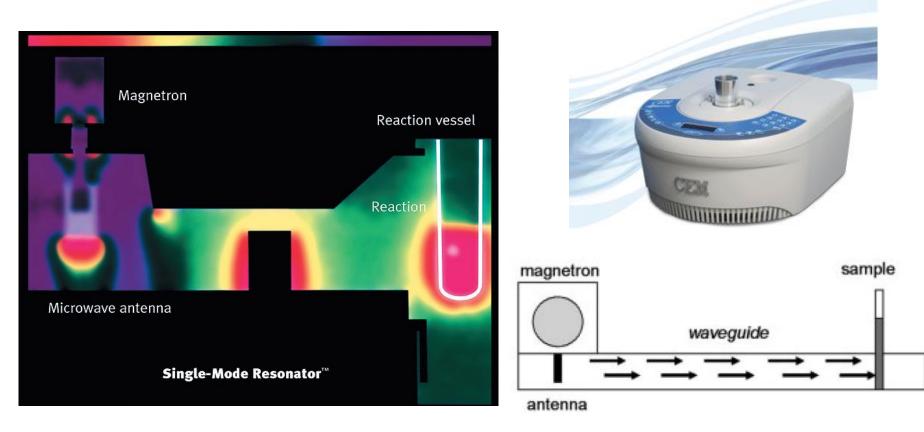
- 1. home microwave ovens
- 2. 2. single-function reactors
- 3. 3. multifunctional reactors


unequal microwave radiation field in a domestic MW oven

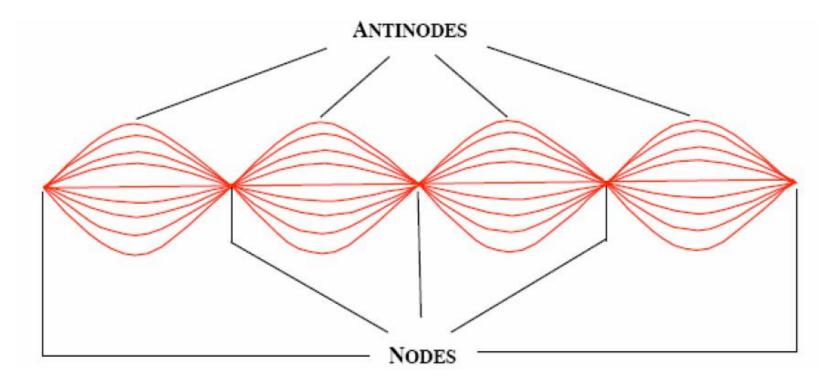
Chronological development of microwave technology:


MICROWAVE SYSTEM

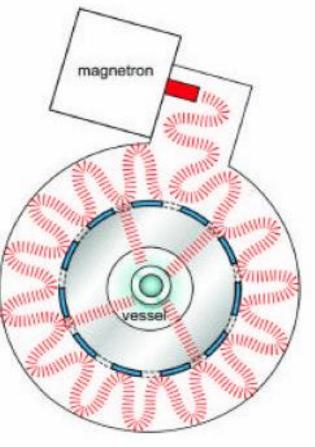
microwave system consists of magnetron, waveguide, sample housing, circulator, IR sensor, deflector ...


MICROWAVE SYSTEM

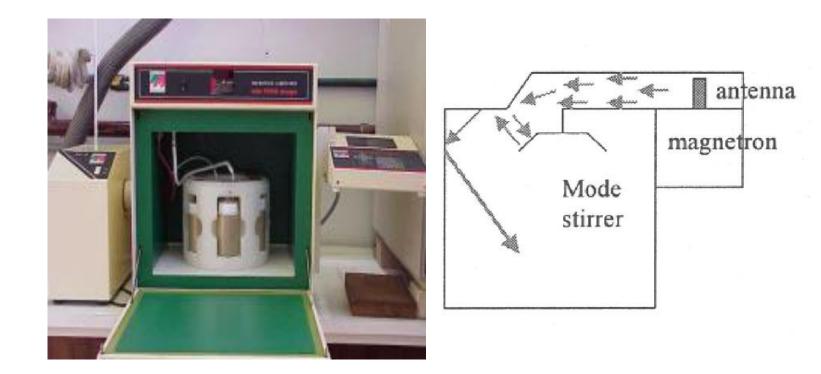
magnetron – a source of constant microwave radiation

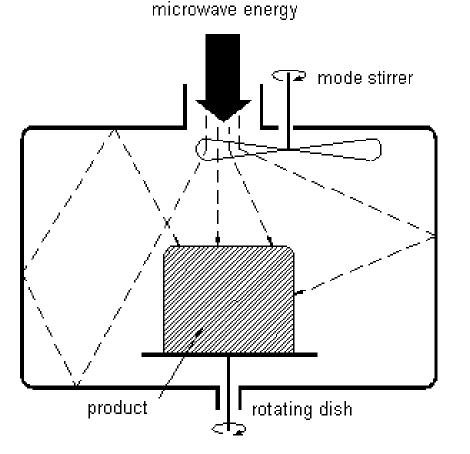

- waveguide leads microwaves to the antenna or microwave applicator (housing)
- circulator protects the magnetron or the entire instrument from reflective microwave radiation
- deflector ensures constant MW radiation the maximum power of MW radiation is converted into heat

- this is made with small quantities (0.2 50 mL) and one reaction vessel
- the radiation passes through a well-defined waveguide and falls in a directed manner on a reaction vessel
- Iocated at a precisely determined distance from the MW radiation source.


the main feature of single-function reactors is the ability to create a constant wave profile of MW radiation

* a set of nodes is formed at which the MW energy intensity is zero and a set of nodes where the magnitude of MW radiation is the highest and the MW energy intensity is maximum

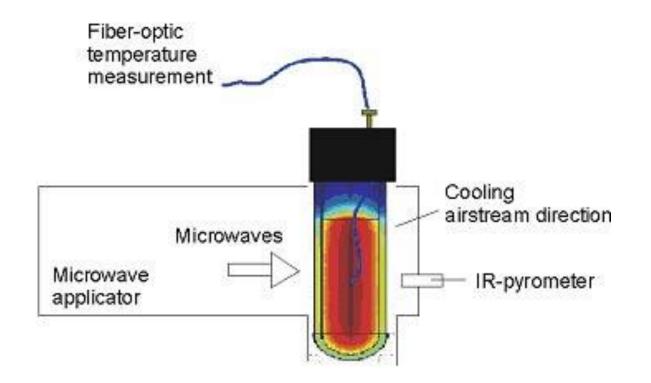

- the reaction vessel must be located at an appropriate distance from the magnetron in order for the sample to be located at the nodes with the maximum energy of MW radiation
- the main disadvantage of single-function reactors is one reaction vessel that can be irradiated at the same time


MULTIFUNCTIONAL REACTORS

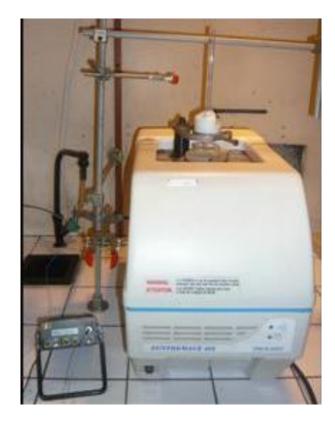
 have a large housing within which MW radiation is distributed in all directions by reflection on the walls of the housing
 the reaction vessels rotate and thus a homogeneous distribution of the electromagnetic field is achieved

MULTIFUNCTIONAL REACTORS

no constant wave profile of MW radiation is created
 the goal is to obtain the maximum dispersion of MW radiation and thus increase the area that can cause effective heating within the reaction space



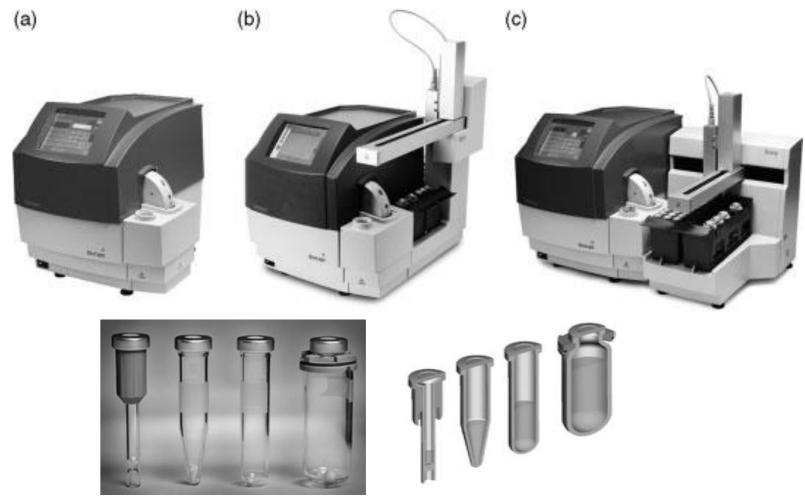
 in this way several reaction vessels can be irradiated simultaneously and equally


- works with larger quantities (several liters)
- the disadvantage is the inability to fully control the heating of the samples

Microwave recator with cooling

- cooling the reaction mixture being heated simultaneously
- increased proportion of MW radiation power temperature can be measured simultaneously and independently
- sing two temperature sensors

- 1990 the first single-function reactor
- the French company Prolabo -simple layout with rectangular waveguide and magnetron with a maximum output power of 300 W
- designed for the use of cylindrical glass or quartz vessels of various diameters



Biotage

single-function reaction initiator reactor

different reaction vessels (from 0.2-0.5 mL to 20 mL)

Biotage

- 2004. "Emrys Liberator"
- reaction vessels from 0,5 5 mL

- up to 120 reactions in parallel
- fully automated device
- from 60 250 °C max. pressure 20 bar
- temperature control by IR sensor

Biotage

- Chemspeed SWAVE", max 240 samples
- fully automated work from sample preparation, reactions, reagent addition to product purification by extraction, filtration, chromatographic analysis

<u>CEM</u>

- \$ from 2001, "Discover system"
- ✤ a round housing that allows equally energy
- Open (up to 125 mL) and closed systems (up to 50 mL) maximum power up to 300 W

<u>CEM</u>

- "Discover CoolMate" for reactions at low temperatures
- from -80 do 65 °C

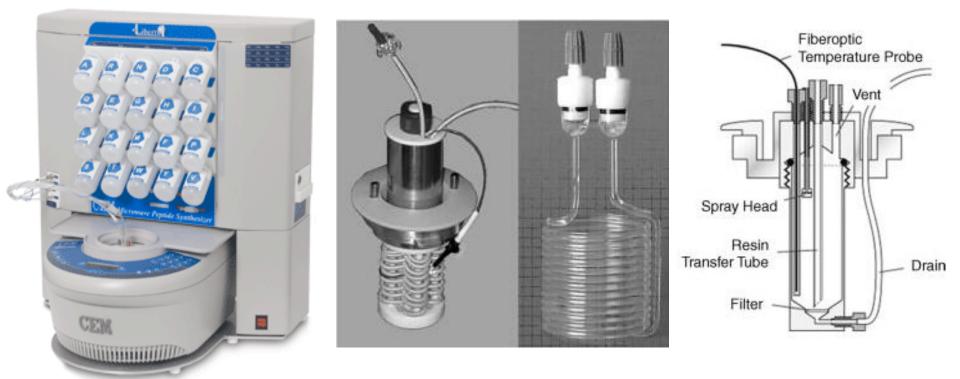
integrated in situ reaction monitoring camera

<u>CEM</u>

* "Voyager Systems"

automated system - designed for "scale-up" up to 1 kg

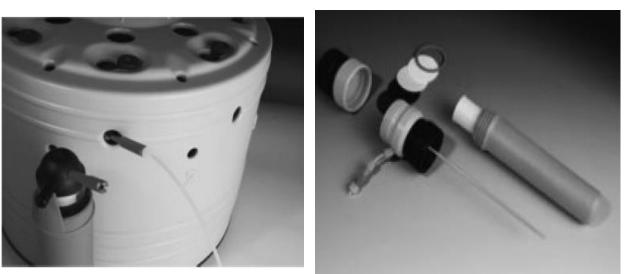
<u>CEM</u>


- Voyager_{SF} System"
- reaction vessel of 80 mL, up to 250 C and 18 bar
- reactor for heterogeneous reaction mixtures, emulsions and solid phase reactions

<u>CEM</u>

- Peptide Synthesizer" solid phase peptide synthesis
- fully automated MW reactor synthesizes up to 12 peptides
- suitable for 25 amino acids

COMPARISON OF SINGLE-FUNCTION REACTORS


Features	Biotage Initiator 2.0	CEM Discover
Waveguide	rectangular	circular
Max. output power	400 W	300 W
Operation temperature	40–250 °C	rt-300 °C
Max. pressure	20 bar	20 bar
		15 bar (80 mL vessel)
Vessel sizes	0.2–20 mL	4–80 mL
		max. 125 mL round-bottom flask
Sealing mechanism	permanent with crimped caps	"Snap-on" IntelliVent caps
IR sensor	from the side at a defined height	from the bottom
Fiber optic	×	\checkmark
Simultaneous cooling	\checkmark	\checkmark
Closed vessel	\checkmark	\checkmark
Open vessel	×	\checkmark
Magnetic stirring	300–900 rpm	3 different speeds
Method programming	touch screen	touch pad or PC

Anton Paar

Synthos 3000" – one of the most commonly used reactors

- If the second second
- two magnetrons and a continuous power of 1400 W enable a series of reactions that finally yield a large amount of product

part for introduction gases

filter part

Anton Paar

- reactors for 8, 16 and 48 reaction vessels
- depending on the material, different temperatures and pressures can be achieved

	4×24MG5/ 64MG5	48MF50	16MF100	16HF100	8SXF100	8SXQ80
No. of vessels	96/64	48	16	16	8	8
Volume (mL)	5	50	100	100	100	80
Operating volume (mL)	0.3-3	6–25	6–60	6–60	6–60	6–60
Max. temperature (°C)	200	200	200	240	260	300
Max. pressure (bar)	20	20	20	40	60	80
Liner material	glass	PFA	PTFE-TFM	PTFE-TFM	PTFE-TFM	quartz
Pressure jacket	×	PEEK	PEEK	ceramics	ceramics	×
Pre-pressurizing	×	×	×	10 bar	20 bar	20 bar

Biotage AB

reactions up to 350 mL - from 10 to 100 g of product \$1200 W, up to 250°C

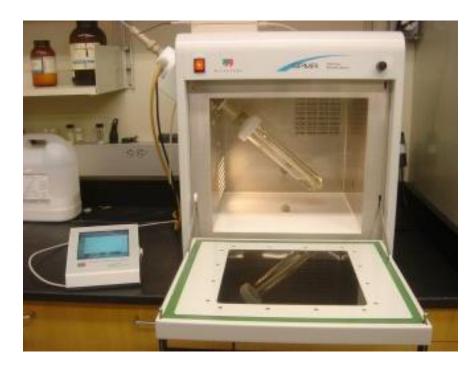
<u>CEM</u>

- * "MARS S" system
- temperature up to 300 °C and pressure of 100 bar
- volume up to 48 L, max. power up to 1400 W but experiments are usually performed using 400 to 800 W power (low power level)

CEM

"MARS scale-up" system

reaction vessels 2 to 4 L



	GlassChem	MARS	Xpress	XP-1500 +	HP-500+
No. of vessels	24	40	40	12	14
Vessel volume (mL)	20	55	10-75	100	100
Operating volume (mL)	3-14	6-35	1-50	10-70	10-70
Max. temperature (°C)	200	300	260	300	260
Max. pressure (bar)	14	35	35	100	34
Vessel material	glass	TFM	PFA	Teflon, Pyrex, quartz	
Temp. control	fiber-optic	IR	IR	fiber-optic+	optional IR
_	-			Duo	Temp

MILESTONE

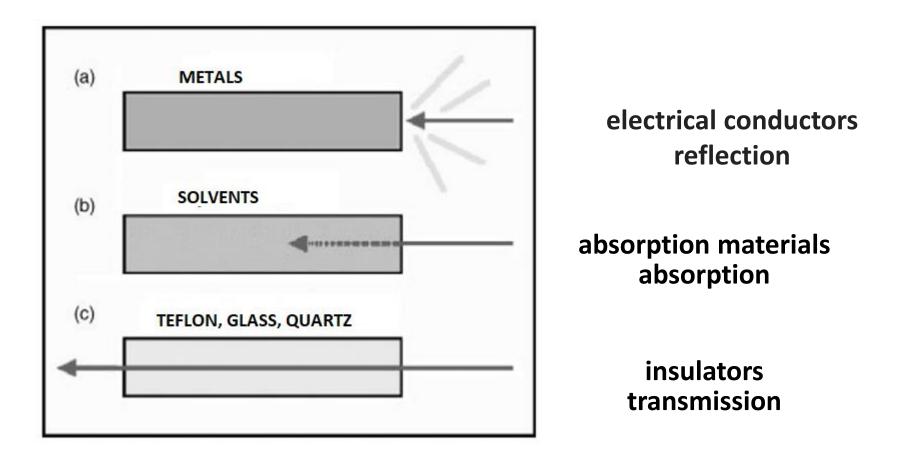
- > a large number of various multifunctional MW reactors for conducting reactions of volume up to 3.5 L in a closed system
- >there is the possibility of a single-function and multi-function system in the same MR reactor

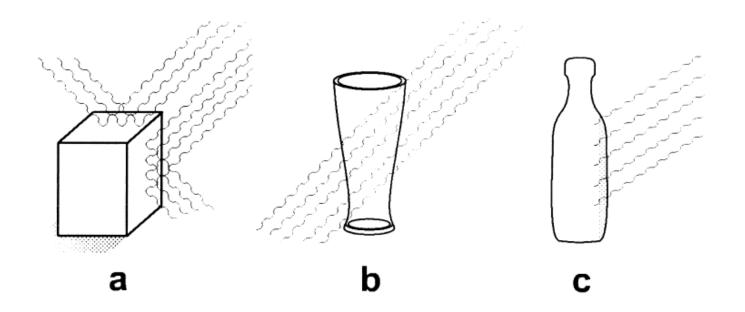
MILESTONE

- "Pilot 4000 labstation" i "ETHOSpilot 4000" in industry
- to obtain large quantities of products up to 1 kg

University of Zagreb Faculty of Chemical Engineering and Technology Study programme Chemical and Environmental Technology

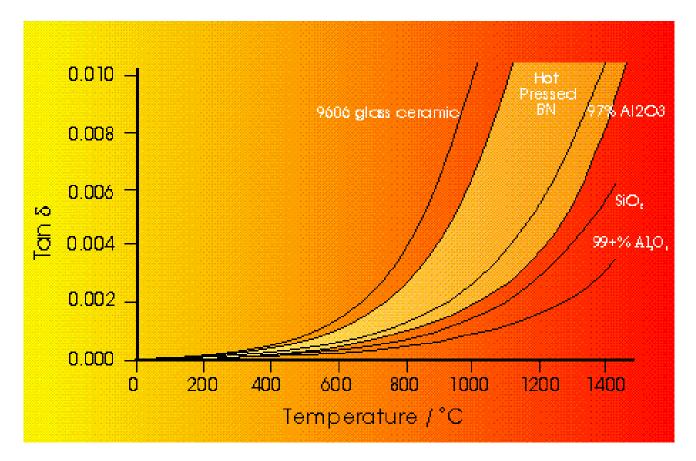
INTERACTION OF MATERIALS WITH MW RADIATION

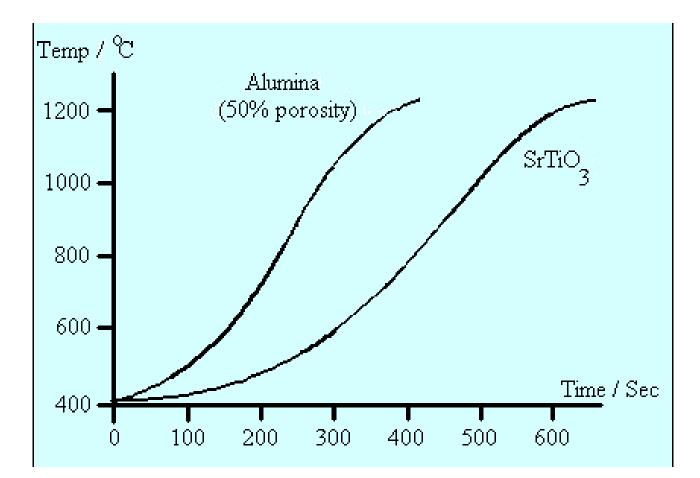

Prof. Marijana Hranjec, PhD


Academic year 2023/2024

the ability of materials to absorb MW radiation is characterized by the penetration length: the point at which 37% of the initial power of MW radiation is still present

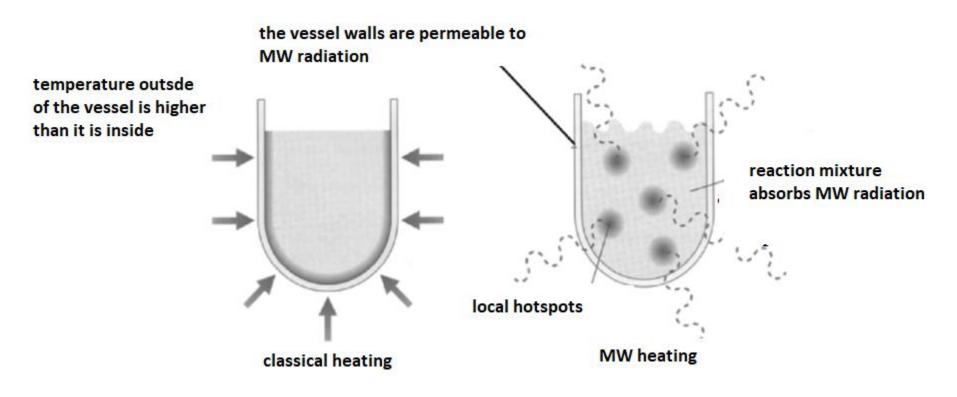
Material	tan δ (×10 ⁻⁴)	Material	tan δ (×10 ⁻⁴)	
Quartz	0.6	Plexiglass	57	
Ceramic	5.5	Polyester	28	
Porcelain	11	Polyethylene	31	
Phosphate glass	46	Polystyrene	3.3	
Borosilicate glass	10	Teflon	1.5	

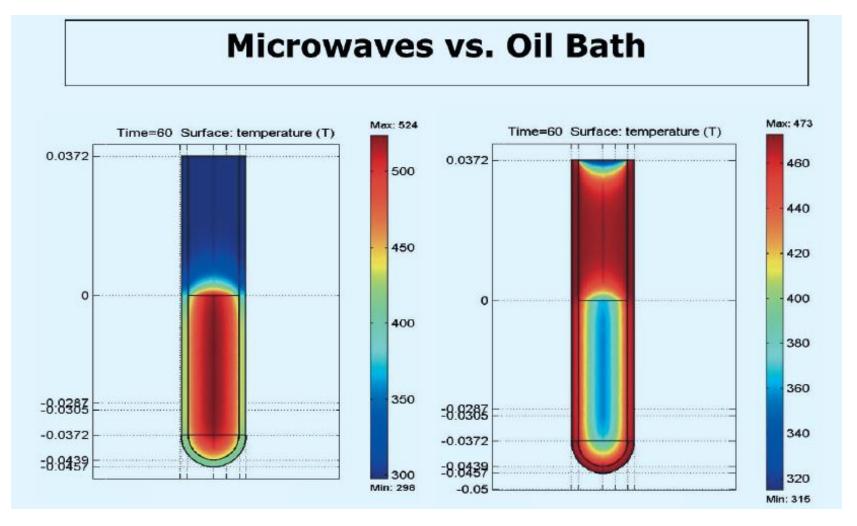

characterized by three basic processes: reflection, absorption, and transmission



- ***** a: electric conductor high conductivity
- b: insulator non-polar materials
- c: absorption materials rapid heating of the medium

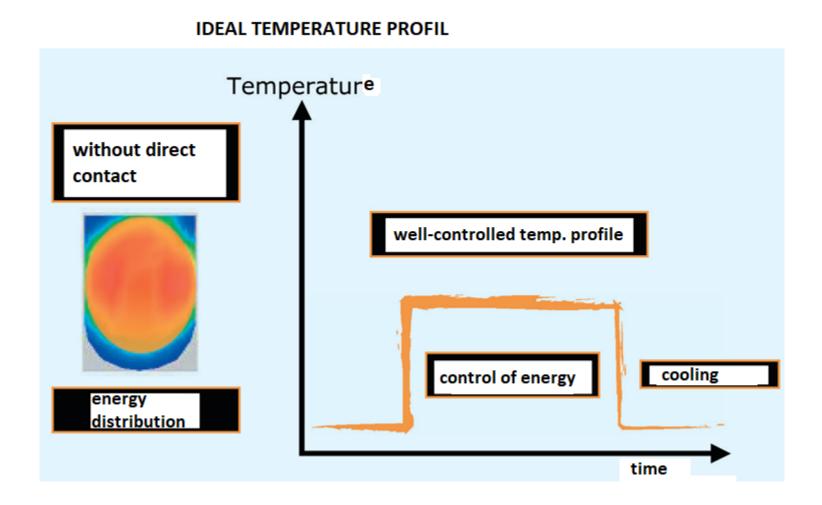
Dependence of tan δ on the temperature of some ceramic materials: many metal oxides or sulfides can reach very high temperatures after a short exposure to MW radiation


Temperature dependence on heating time:


Comparison of classical and MW heating

<u>CLASSICAL SYNTHESIS</u> – heating the reaction vessel with an external heat source where the heat is transferred from the source to the vessel walls and to the solvent and reactants - depending on the thermal conductivity of the vessel material - the vessel is heated more than the reaction mixture - longer equilibrium period

MICROWAVE SYNTHESIS - the reaction mixture directly absorbs energy because the walls of the vessel are permeable - controlled reactions


Comparison of classical and MW heating

temperature profile after 60 seconds of heating with microwave and classical heating

Comparison of classical and MW heating

microwave heating achieves an ideal temperature profile, heating is highly controlled

