

Faculty of Chemical Engineering and Technology University of Zagreb

BAT in Chemical Industry

Prof. dr. sc. Ante Jukić

Industrial Emissions

Prevention and control of industrial emissions

Industrial activities play an important role in the <u>economic well-being</u> of Europe contributing to sustainable growth but can also have a significant impact on the environment.

The largest industrial installations account for a considerable <u>share of total emissions of key atmospheric</u> <u>pollutants and also have other important environmental impacts, including emissions to water</u> and soil, generation of waste and the use of energy.

Environmental impacts of industrial installations have therefore been subject to EU-wide legislation for some time. The following main pieces of legislation currently apply:

- <u>Directive 2010/75/EU on industrial emissions (IED)</u>: This establishes the main principles for permitting and control of large industrial installations based on an integrated approach and the application of best available techniques (BAT). BAT is the most effective techniques to achieve a high level of environmental protection, taking into account the costs and benefits.
- <u>Directive (EU) 2015/2193 on medium combustion plants (MCPD)</u>:

The MCPD regulates emissions of sulphur dioxide, nitrogen oxides and dust from the combustion of fuels in plants with a rated thermal input between 1 and 50 MW thermal.

- <u>Directive 1994/63/EC</u> and <u>Directive 2009/126/EC</u> on <u>petrol storage & distribution</u>:
- These related directives reduce volatile organic compound emissions to the atmosphere by imposing measures on storage and distribution of petrol.
- Regulation 166/2006 on the European Pollutant Release and Transfer Register:

This register gives public access to detailed information on the emissions and the off-site transfers of pollutants and waste from around 30 000 industrial facilities.

emissions to air emissions to water

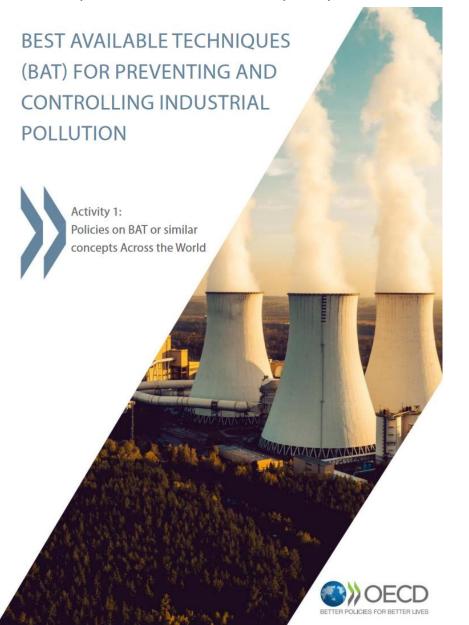
emissions to land

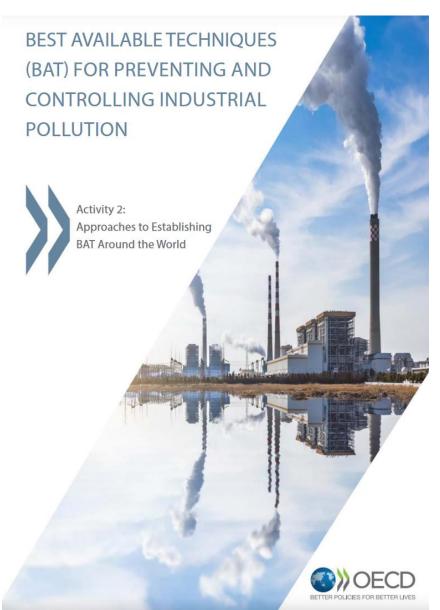
prevention and control of accidents

and recovery

energy & water use

vibration

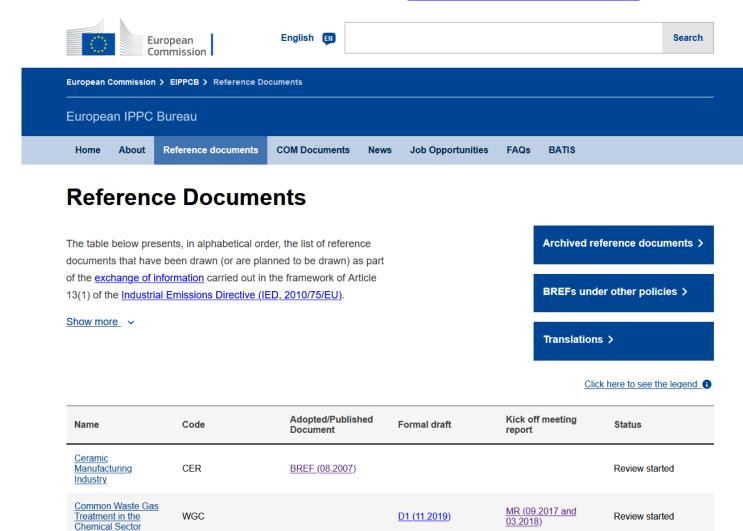

noise heat


odour

1

Successes in reducing industrial emissions

Specific case studies provide evidence of progress towards cleaner industry and improved environmental quality.


BREFs and BAT conclusions

Best Available Techniques (BAT) are identified through an exchange of information with experts from Member States, industry and environmental organisations.

This process results in BAT Reference documents (BREFs).

BREFs contain BAT conclusions which are adopted by the Commission as Implementing Decisions.

All finalised BREFs and adopted BAT conclusions can be found at this link: **BREFs and BAT conclusions**

Name	Code	Adopted/Published Document	Formal draft	Kick off meeting report	Status
Ceramic Manufacturing Industry	CER	BREF (08.2007)			Review started
Common Waste Gas Treatment in the Chemical Sector	WGC		<u>D1 (11.2019)</u>	MR (09.2017 and 03.2018)	Review started
Common Waste Water and Waste Gas Treatment/Management Systems in the Chemical Sector	CWW	BREF BATC (06.2016)			Published
Economics and Cross- media Effects	ECM	REF (07.2006)			Document formally adopted
Emissions from Storage	EFS	BREF (07.2006)			Document formally adopted
Energy Efficiency	ENE	BREF (02.2009)			Document formally adopted
Ferrous Metals Processing Industry	FMP	BREF (12.2001)	<u>D1 (03.2019)</u>	MR (11.2016)	Document formally adopted
Food, Drink and Milk Industries	FDM	BREF BATC (12.2019)			Published
Industrial Cooling Systems	ICS	BREF (12.2001)			Document formally adopted
Intensive Rearing of Poultry or Pigs	IRPP	BREF BATC (02.2017)			Published
Iron and Steel Production	IS	BREF BATC (03.2012)			Published
<u>Large Combustion</u> <u>Plants</u>	LCP	BREF BATC (07.2017)			Published
<u>Large Volume</u> <u>Inorganic Chemicals –</u> <u>Ammonia, Acids and</u> <u>Fertilisers</u>	LVIC-AAF	BREF (08.2007)			Document formally adopted

JRC SCIENCE AND POLICY REPORTS

Best Available Techniques (BAT) Reference Document for the Refining of Mineral Oil and Gas

Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)

Pascal Barthe, Michel Chaugny, Serge Roudier, Luis Delgado Sancho

2015

Best Available Techniques Reference Document for the Refining of Mineral Oil and Gas

PREFA	CE	I
COPE	X	XVII
GE	NERAL INFORMATION	1
1.1	THE PURPOSE OF REFINERIES	
1.2	REFINERY SECTOR IN THE EU	2
1.2.1	General	2
1.3	2.1.1 Oil refining	
	2.1.2 Natural gas refining	
1.2.2		
	2.2.1 Crude oil feedstock	
	2.2.2 Biofuels feedstock growth	
1.23	-	
	2.3.1 European oil refining capacity	
1.3	2.3.2 European natural gas refining capacity	
1.2.4	Product market	15
1.3	2.4.1 Petroleum products	
	2.4.2 Natural gas	
1.3	EUROPEAN REFINERIES	21
1.3.1		
1.3.2		
1.3.3		
1.3.4	Employment in the European refinery sector	27
1.4		
1.4.1	Emissions to the atmosphere	28
1.4.2	2 Emissions to water	30
1.4.3	Waste generation	33
1.4.4	Soil and groundwater contamination	34
1.4.5	Other environmental issues	34
AP	PLIED PROCESSES AND TECHNIQUES	37
2.1	GENERAL OVERVIEW OF REFINERY PROCESSES	38
2.2	ALKYLATION	42
2.3	Base oil production	45
2.4	BITUMEN PRODUCTION	50
2.5	CATALYTIC CRACKING	52
2.6	CATALYTIC REFORMING	56
2.7	COKING PROCESSES	59
2.8	COOLING SYSTEMS	62
2.9	DESALTING	64

Refining of Mineral Oil and Gas

	2.10	Energy system	6
	2.11	ETHERIFICATION	7
	2.12	GAS SEPARATION PROCESSES	7
	2.13	HYDROGEN-CONSUMING PROCESSES	
	2.14	HYDROGEN PRODUCTION	8
	2.15	INTEGRATED REFINERY MANAGEMENT.	
	2.16	Isomerisation	
	2.17	Natural gas plants	
	2.18	POLYMERISATION	
		PRIMARY DISTILLATION UNITS	
	2.19		
	2.20	PRODUCT TREATMENTS.	
	2.21	STORAGE AND HANDLING OF REFINERY MATERIALS	
	2.22	VISBREAKING AND OTHER THERMAL CONVERSIONS	
	2.22		
	2.22		
	2.23	New high conversion techniques.	11
	2.24	TECHNIQUES FOR THE ELIMINATION AND THE VALORISATION OF EXTERNAL WASTE USED AS A SECONDARY RAW MATERIAL	11
	2.25	TECHNIQUES FOR THE ABATEMENT OF EMISSIONS	11
3	CU	RRENT EMISSION AND CONSUMPTION LEVELS	11
•	31	CURRENT EMISSION AND CONSUMPTION LEVELS IN REFINERIES AS A WHOLE	
	3.1.1		
		1.1 Energy	
	3.1	.1.2 Water	12
	3.1.2		
		.2.1 Carbon dioxide emissions	
		2.2 Nitrogen oxides emissions	
		2.3 Particulate emissions	
		2.4 Sulphur oxides emissions	
		2.5 Volatile organic compounds emissions 2.6 Other emissions to air	
		2.7 Expression of full or partial site air emissions using 'bubbles'	
	3.1.3		
	3.1.3	Emissions to water ALKYLATION	
	3.3		
		BASE OIL PRODUCTION.	
	3.3.1	1 0	
	3.3.2		
	3.3.3		
	3.3.4		
	3.3.5	,	
	3.4	BITUMEN PRODUCTION	
	3.5	CATALYTIC CRACKING	
	3.5.1	Consumption	16

3.5.2	2	Emissions	164
3.5	5.2.1	Air emissions	
	5.2.2		
	5.2.3	Solid wastes	
3.6		ALYTIC REFORMING	
3.7		ING PROCESSES	
3.8	Coo	LING SYSTEMS	175
3.9	DES	ALTING	177
3.10	ENE	RGY SYSTEM	179
3.10	.1	Energy management	179
3.10	.2	Energy capacity and consumption	180
3.10	.3	Emissions	182
3.1	10.3.1		
	10.3.2		
	10.3.3	Solid wastes generated	
3.11		ERIFICATION	
3.12	GAS	SEPARATION PROCESSES	191
3.13	Hyd	ROGEN-CONSUMING PROCESSES	192
3.13	.1	Hydrotreatment	
3.13	.2	Hydrocracking	195
3.14	Hyd	ROGEN PRODUCTION	196
3.15	INTE	GRATED REFINERY MANAGEMENT	199
3.16	Isom	IERISATION	201
3.17	NAT	URAL GAS PLANTS	203
3.18	Poly	YMERISATION	206
3.19	Prim	ARY DISTILLATION UNITS	201
3.20	Proi	DUCT TREATMENTS	209
3.21	STOR	RAGE AND HANDLING OF REFINERY MATERIALS	211
3.22	VISE	BREAKING AND OTHER THERMAL CONVERSIONS	214
3.22	.1	Visbreaking	214
3.22	.2	Thermal gas oil units (TGU)	
3.23	EMIS	SSIONS FROM WASTE GAS TREATMENT TECHNIQUES	
3.23	.1	Sour gas treatments	216
3.23	.2	Sulphur recovery units (SRU)	
3.23	.3	Flares	217
3.24	EMIS	SSIONS FROM WASTE WATER TREATMENT TECHNIQUES	219
3.25		STE GENERATION	
3.26		VITORING	
3.26		Monitoring of emissions to air	
	26.1.1	Sulphur monitoring	
	26.1.2	Emissions from combustion processes	
3.2	26.1.3	Diffuse VOC monitoring	
3.2	26.1.4	Odour monitoring	235

Refining of Mineral Oil and Gas

	3.26.1		
	3.26.1 3.26.2		
		Monitoring of releases to water	
	3.26.3	Monitoring solid wastes	
	3.26.4	Soil and groundwater monitoring	
	TECHN	IQUES TO CONSIDER IN THE DETERMINATION OF BAT	. 243
4	.1 Gen	ERAL OVERVIEW	24:
4	.2 ALK	YLATION	240
	4.2.1	Hydrofluoric acid alkylation process	240
	4.2.2	Sulphuric acid alkylation process	248
	4.2.3	Upgrade feedstock by selective hydrogenation or isomerisation	250
4	.3 Basi	E OIL PRODUCTION	
	4.3.1	Multiple-effect extraction process	
	4.3.2	Conversion of a solvent extraction unit (from Furfural or Phenol to NMP)	
	4.3.3	Solvent recovery from dewaxing units	
	4.3.4	Wax reprocessing unit	
	4.3.5	Storage and benchmarking of solvents	
	4.3.6	Sulphur treatment from hydrogenation units	
	4.3.7	Stripping of waste water from aromatic extraction	
	4.3.8	Energy use and integration	
	4.3.9	Catalytic processes based on hydrogenation	
	4.3.10	Improved solvent-based plants with lower loss of containment	
4	.4 Brru	THEN PRODUCTION	
	4.4.1	Storage of bitumen products	
	4.4.2	Techniques to control emissions to the air	
	4.4.2.1	Treatment of the gaseous overheads	
	4.4.2.2	Use of the heat from incondensable products and condensates	
	4.4.2.3	Treatment of vents from the storage and handling of bitumen materials	
	4.4.2.4	Sulphur dioxide abatement and sulphur recovery units	
	4.4.3	Waste water pretreatment techniques	
	4.4.4	Hot oil system	
4		ALYTIC CRACKING	
	4.5.1	Hydrotreatment of feed to the catalytic cracker	260
	4.5.2	Waste heat boiler and expander applied to the flue-gas from the FCC regenerator	260
	4.5.3	Catalyst selection	
	4.5.4	Nitrogen oxides abatement techniques	
	4.5.4.1	Selective catalytic reduction (SCR)	
	4.5.4.2	Selective catalytic reduction (SCR)	
	4.5.4.3	Low-NO _X CO oxidation promoters	
	4.5.4.4	Specific additives for NO _X reduction	28
	4.5.4.5	Low-temperature oxidation (SNERT process/LoTO _X technology)	
	4.5.4.6	Process optimisation	
	4.5.5	Particulate abatement techniques	
	4.5.5.1	Third-stage cyclone separators	29

4.5.5.2	Electrostatic precipitators (ESPs)	
4.5.5.3	Other filters	
4.5.6 4.5.6.1	Sulphur oxides abatement techniques SO _v -reducing catalyst additives	
4.5.6.1	SO _X -reducing catalyst additives Wet scrubbing	
4.5.6.3	Dry and semi-dry scrubbers	
4.5.6.4	Seawater scrubbing	
4.5.7	FCCU abatement techniques' performance and emissions variability	31
4.5.8	Waste management techniques	31
4.6 CAT	ALYTIC REFORMING	
4.6.1	Reduction and/or substitution of catalyst promoter (chlorine precursor)	32
4.6.2	Cleaning of the regeneration flue-gas	32
4.6.3	Electrostatic precipitator in the regeneration flue-gas	32
4.6.4	Reduction of PCDD/F emissions from catalytic reforming	32
4.7 COE	ING PROCESSES	32
4.7.1	Techniques to prevent emissions from delayed coking	
4.7.2	Techniques to prevent emissions from fluid coking	32
4.7.3	Techniques to prevent emissions from the calcination process	
4.7.4	Flexicoking	
4.7.5	Use of oily sludges and/or waste as coker feedstock	32
4.7.6	Water use in the cooling/cutting process	
4.7.7	Handling and storage of the coke	
4.7.8	Techniques to reduce air emissions	
4.7.8.1	Particulate abatement in coking processes	
4.7.8.2	SO ₂ abatement techniques	33
4.7.8.3	NO _X abatement techniques	
4.7.8.4	Cleaning of the coking gas	33
4.7.9	Techniques to prevent emissions to water	
4.7.9.1	Treatment of the waste water	
4.7.9.2	Separation of the oil/coke fines from the coke-cutting water	
4.7.10	Techniques to reduce soil contamination	
4.7.10.1	Control and reuse of coke fines	
	LING SYSTEMS	
4.8.1	Segregation of cooling and process waters	
4.8.2	Air cooling	
4.8.3	Prevention of oil leakages into cooling water	
4.9 Des	ALTING	33
4.9.1	Good desalting practices	33
4.9.2	Enhance the oil/water separation before discharge to the waste water	22
402	treatment plant	
4.9.3	Enhance the solid/water-oil separation	
4.9.4	Reuse of water for the desalter	
4.9.5	Stripping of the desalter brine	
	RGY SYSTEM	
4.10.1	Energy management	
4.10.1.1	Energy efficiency management	34

viii Refining of Mineral Oil and Gas Refining of Mineral Oil and Gas ix

4.10.1		
4.10.1.2		
4.10.1		
4.10.1	•	
	0.1.2.2.1 Steam management and reduction of steam consumption	
	0.1.2.2.2 Other techniques	
4.10.2	Refinery fuels: types and cleaning	
4.10.2.1	_	
4.10.2.2		
4.10.2.3	,	
4.10.3	Energy production techniques	
4.10.3.1		
4.10.3.2		
4.10.3.3		
4.10.3.4 4.10.3.5		
4.10.4	Nitrogen oxide control and abatement techniques	
4.10.4.1		
4.10.4.2		
4.10.4.3 4.10.4.4	2	
4.10.4.4		
4.10.4.6		
4.10.4.7		
4.10.4.8		
4.10.4.9		
4.10.5	Particulate abatement techniques	
4.10.5.1		
4.10.5.2		
4.10.5.3	-	
4.10.6	Sulphur oxides abatement techniques	
4.10.6.1	•	
4.10.6.2		
4.10.7	Combustion units abatement techniques' performance and emissions	
4.10.7	variability	38
.11 Етн	IERIFICATION	
4.11.1	Catalytic distillation.	
4.11.2	Prevention of upsets in the waste water biotreater	39
4.11.3	Prevention of leaking of water-soluble compounds	39
.12 GAS	S SEPARATION PROCESSES	39
4.12.1	Fugitive emissions reduction	39
4.12.2	Prevention of emissions of LPG odorant	
	DROGEN-CONSUMING PROCESSES	
4.13.1	Hydrodesulphurisation processes	
4.13.1	Catalytic distillation	
	•	
4.13.3	On-stream catalyst replacement technology for processing high-metal feed	
4.13.4	Hydrogenation of light dienes	
.14 Hyr	DROGEN PRODUCTION	40

	4.14.	1	Steam methane reforming	. 40
	4.14.	2	Gas-heated reforming (GHR)	. 40
	4.14.	3	Partial oxidation	. 40
	4.14.	4	Purification of hydrogen	. 40
4.1	15	INTE	GRATED REFINERY MANAGEMENT	. 40
	4.15.	1	Environmental management tools	. 40
	4.1	5.1.1	Environmental management system	40
	4.1	5.1.2	Energy conservation techniques	40
	4.15.	2	Production planning and control	. 41
	4.15.	3	Safety management	. 41
	4.15.	4	Water management	. 41
		5.4.1	Water stream integration (WSI)	
		5.4.2	Water and drainage system	
		5.4.3	Rainwater	
		5.4.5	Firefighting water	
		5.4.6	Priority substance-driven management	
	4.15.	.5	Site-level management of air emissions: the 'bubble approach'	
	4.15.	6	Anticipation of and adaptation to unfavourable meteorological conditions	. 42
4.1	16	Isom	ERISATION	. 42
	4.16.		Active chloride-promoted catalyst isomerisation process	
	4.16.	_	Zeolitic isomerisation process	
			URAL GAS PLANTS	
	4.17.		Amine sweetening of natural gas	
	4.17.		Sulphur recovery unit	
	4.17. 4.17.		Techniques to reduce VOC emissions.	
	4.17.		Techniques to reduce NO _X emissions	
	4.17. 4.17.		Techniques to reduce vox emissions	
	4.17. 4.17.		Techniques to reduce water emissions Techniques to reduce waste generation.	
		-		
			MERISATION	
	4.18.	_	Reduction of emissions and use of catalyst within the process	
	4.18.		Management and reuse of the catalyst	
4.1	19	Prim	ARY DISTILLATION UNITS	
	4.19.	1	Progressive distillation unit	
	4.19.	2	Heat integration of crude distillation units	
	4.19.	3	Heat integration of the vacuum distillation units	
	4.19.	4	Use of vacuum pumps and surface condensers	. 43
	4.19.	.5	Reduction of the vacuum pressure in the vacuum distillation unit	. 43
	4.19.	.6	Treatment of non-condensables from the vacuum ejector set condenser	. 43
	4.19.	7	Waste water treatment and reuse	. 43
	4.19.	8	Other techniques to consider in the atmospheric units	. 43
4.2	20	Proi	DUCT TREATMENTS	
	4.20.		Cascading of caustic solutions	
	4.20.		Management of the spent caustic	
		_	- The special contract	

Refining of Mineral Oil and Gas Refining of Mineral Oil and Gas xi

	4.10.1.		34
	0.1.2	Heat integration/recovery techniques	
	4.10.1.		
	4.10.1.	•	
		1.2.2.1 Steam management and reduction of steam consumption	
4.10		1.2.2.2 Other techniques	
4.10	_	Refinery fuels: types and cleaning	
	0.2.1	Increase the use of gas	
	0.2.2	Cleaning of refinery fuel gas	
4.10			
	-	Energy production techniques	
	10.3.1	Furnaces and boilers	
	0.3.3	Gas turbines	
	10.3.4	Gasification of heavy oils or coke (IGCC)	
	10.3.5	Fluidised bed boiler	
4.10		Nitrogen oxide control and abatement techniques	
	. 4 10.4.1	Low-NO _X burners and ultra-low-NO _X burners	
	10.4.1	Dry low-NO _X combustors	
	10.4.2	Flue-gas recirculation	
	0.4.4	Diluent injection	
	0.4.5	Fuel staging (reburning)	
	0.4.6	Selective non-catalytic reduction (SNCR)	
	0.4.7	Selective catalytic reduction (SCR)	
4.1	0.4.8	Low-temperature oxidation	38
4.1	0.4.9	Catalytic reduction of CO and NO _X	
4.10	.5	Particulate abatement techniques	38
4.1	0.5.1	Switching to low-ash content fuels	
4.1	0.5.2	Steam atomisation for liquid fuel	38
4.1	0.5.3	Electrostatic precipitator (ESP)	38
4.10	.6	Sulphur oxides abatement techniques	38
4.1	0.6.1	Additives to fuels	38
4.1	0.6.2	Flue-gas desulphurisation processes	38
4.10	.7	Combustion units abatement techniques' performance and emissions variability	38
1.11	Етне	RIFICATION	39
4.11		Catalytic distillation	
4.11	-	-	
	_	Prevention of upsets in the waste water biotreater	
4.11	-	Prevention of leaking of water-soluble compounds	
1.12	GAS	SEPARATION PROCESSES	39
4.12	.1	Fugitive emissions reduction	
4.12	.2	Prevention of emissions of LPG odorant	39
4.13	Hydi	ROGEN-CONSUMING PROCESSES	39
4.13	.1	Hydrodesulphurisation processes	39
4.13	.2	Catalytic distillation	
4.13		On-stream catalyst replacement technology for processing high-metal fr	
4.13		Hydrogenation of light dienes.	
4.13		ROGEN PRODUCTION	
1.14	TID	ROGEN PRODUCTION	40

4.14.1	Steam methane reforming	401
4.14.2	Gas-heated reforming (GHR)	403
4.14.3	Partial oxidation	404
4.14.4	Purification of hydrogen	405
4.15 INTE	GRATED REFINERY MANAGEMENT	407
4.15.1	Environmental management tools	407
4.15.1.1	Environmental management system.	
4.15.1.2	Energy conservation techniques	
4.15.2	Production planning and control	410
4.15.3	Safety management	410
4.15.4	Water management	410
4.15.4.1	Water stream integration (WSI)	410
4.15.4.2	Water and drainage system	
4.15.4.3	Rainwater	
4.15.4.4 4.15.4.5	Ballast water	
4.15.4.6	Priority substance-driven management	
4.15.5	Site-level management of air emissions: the 'bubble approach'	
4.15.6	Anticipation of and adaptation to unfavourable meteorological conditions.	
	ERISATION	
4.16.1		
	Active chloride-promoted catalyst isomerisation process	
4.16.2	Zeolitic isomerisation process	
	URAL GAS PLANTS	
4.17.1	Amine sweetening of natural gas	
4.17.2	Sulphur recovery unit	
4.17.3	Techniques to reduce VOC emissions	429
4.17.4	Techniques to reduce NO _X emissions	429
4.17.5	Techniques to reduce water emissions	429
4.17.6	Techniques to reduce waste generation.	430
4.18 POLY	MERISATION	431
4.18.1	Reduction of emissions and use of catalyst within the process	431
4.18.2	Management and reuse of the catalyst	
4 19 PRIM	IARY DISTILLATION UNITS	
4.19.1	Progressive distillation unit	
4.19.2	Heat integration of crude distillation units	
4.19.2	Heat integration of the vacuum distillation units	
4.19.3	5	
	Use of vacuum pumps and surface condensers	
4.19.5	Reduction of the vacuum pressure in the vacuum distillation unit	
4.19.6	Treatment of non-condensables from the vacuum ejector set condenser	
4.19.7	Waste water treatment and reuse	
4.19.8	Other techniques to consider in the atmospheric units	
4.20 Proi	DUCT TREATMENTS	440
4.20.1	Cascading of caustic solutions	440
4.20.2	Management of the spent caustic	440
	-	

Refining of Mineral Oil and Gas xi

	4.25	4.3 Regenerate or eliminate filtration clay	58
	4.25		58
	4.25		
		4.6 Reuse of waste lubes.	
	4.25		
	4.25.5		
	4.25.6		
,		F AVAILABLE TECHNIQUES (BAT) CONCLUSIONS	
(AL CONSIDERATIONS	
		ging periods and reference conditions for emissions to air	
	Conve	rsion of emissions concentration to reference oxygen level	58
		ging periods and reference conditions for emissions to water	
]		TIONS	
	5.1	GENERAL BAT CONCLUSIONS FOR THE REFINING OF MINERAL OIL AND GAS	
	5.1.1	Environmental management systems	
	5.1.2	Energy efficiency	59
	5.1.3	Solid materials storage and handling	59
	5.1.4	Monitoring of emissions to air and key process parameters	59
	5.1.5	Operation of waste gas treatment systems	59
	5.1.6	Monitoring of emissions to water	
	5.1.7	Emissions to water	
	5.1.8	Waste generation and management	59
	5.1.9	Noise	59
	5.1.10	BAT conclusions for integrated refinery management	59
	5.2	BAT CONCLUSIONS FOR THE ALKYLATION PROCESS	59
	5.2.1	Hydrofluoric acid alkylation process	59
	5.2.2	Sulphuric acid alkylation process	59
	5.3	BAT CONCLUSIONS FOR BASE OIL PRODUCTION PROCESSES	60
	5.4	BAT CONCLUSIONS FOR THE BITUMEN PRODUCTION PROCESS	60
4	5.5	BAT CONCLUSIONS FOR THE FLUID CATALYTIC CRACKING PROCESS	60
4	5.6	BAT CONCLUSIONS FOR THE CATALYTIC REFORMING PROCESS	60
	5.7	BAT CONCLUSIONS FOR THE COKING PROCESS	60
4	5.8	BAT CONCLUSIONS FOR THE DESALTING PROCESS	60
4		BAT CONCLUSIONS FOR THE COMBUSTION UNITS	
4		BAT CONCLUSIONS FOR THE ETHERIFICATION PROCESS	
		BAT CONCLUSIONS FOR THE ISOMERISATION PROCESS	
		BAT conclusions for the natural gas refinery	
		BAT conclusions for the distillation process	
		BAT CONCLUSIONS FOR THE PRODUCTS TREATMENT PROCESS	
		BAT CONCLUSIONS FOR STORAGE AND HANDLING PROCESSES	
		BAT CONCLUSIONS FOR STORAGE AND HANDLING PROCESSES	
	2.10	BAT CONCLUSIONS FOR VISBREAKING AND OTHER THERMAT PROCESSES	0

xiv

5.17	BA'	T CONCLUSIONS FOR WASTE GAS SULPHUR TREATMENT	62:
5.18	BA'	T CONCLUSIONS FOR FLARES	626
5.19	BA'	T CONCLUSIONS FOR INTEGRATED EMISSION MANAGEMENT	62
5.20		CRIPTION OF TECHNIQUES FOR THE PREVENTION AND CONTROL OF EN	
	TO A	AIR	
	20.1	Dust	
	20.2	Nitrogen oxides (NO _X)	
	20.3	Sulphur oxides (SO _X)	
	20.4	Combined techniques (SO _X , NO _X , and dust)	
	20.5	Carbon monoxide (CO)	
	20.6	Volatile organic compounds (VOC)	
	20.7	Other techniques.	
5.21	DES TO V	CRIPTION OF TECHNIQUES FOR THE PREVENTION AND CONTROL OF EN WATER	AISSIONS 63
5.	21.1	Waste water pretreatment	63
5.	21.2	Waste water treatment	63
6 E	MERO	GING TECHNIQUES	639
6.1		INERY ACTIVITIES OVERVIEW	
6.2		YLATION	
6.	2.1	Alkylation of paraffins	
	6.2.1.1	Sulphuric acid process	
	6.2.1.2	Hydrofluoric acid (HF) process	
	6.2.1.3	Solid-acid technology	
	2.2	Ionic liquids (IL)	
6.3		E OIL PRODUCTION	
6.4			
		ALYTIC CRACKING	
6.5		ALYTIC REFORMING	
6.6		ING	
6.7	ENE	RGY SYSTEM	649
6.8	ETH	ERIFICATION	650
6.9	Hyr	DROGEN PRODUCTION	65
6.10	Нут	DROGEN-CONSUMING PROCESSES	652
6.11	Нут	DROCRACKING	654
6.12	Ison	MERISATION	65
6.13	Pri	MARY DISTILLATION	650
6.14	Pro	DUCT TREATMENTS	65
6.15	WA	STE GAS TREATMENTS	658
6.16	WA	STE WATER TREATMENT	660
7 C	ONCL	UDING REMARKS AND RECOMMENDATIONS FOR F	UTURE
v	VORK		661

Refining of Mineral Oil and Gas Refining of Mineral Oil and Gas xv

8	ANI	VEXES	. 665
	8.1	REFINERY CONFIGURATIONS	665
	8.1.1	Configuration 1: hydroskimming + isomerisation unit	666
	8.1.2	Configuration 2: catalytic cracker configuration	667
	8.1.3	Configuration 3: hydrocracker configuration	668
	8.1.4	Configuration 4: complex refinery with hydroconversion and IGCC	669
	8.2	REFINERY FEEDSTOCK, INTERMEDIATES AND PRODUCTS	671
	8.2.1	Crude oil	671
	8.2.2	Refinery intermediates and products	673
	8.3	COST-EFFECTIVENESS OF IMPLEMENTATION OF SOME TECHNIQUES	676
	8.3.1	Basic concepts for cost-effectiveness analysis	676
	8.3.2	Basic hypothesis and assumptions used in the REF BREF for economics	676
	8.4	DESCRIPTION OF ZEOLITES	677
	8.5	SOIL AND GROUNDWATER MONITORING - AN EXAMPLE	678
	8.6	AIR EMISSIONS – THE BUBBLE APPROACH': A METHODOLOGY	683
	8.6.1	APPENDIX A ON 'GOOD PRACTICES' FOR THE IDENTIFICATION AND MAPPING OF ALL INCLUDED SOURCES	685
	8.6.2	APPENDIX B ON VOLUMETRIC GAS ESTIMATION	686
	8.6.3	APPENDIX C ON MASS/LOAD EMISSION ESTIMATION	697
	8.6.4	APPENDIX D BUBBLE MONITORING	698
G	LOSS	ARY	. 699
	I.	ISO COUNTRY CODES	699
	Π.	MONETARY UNITS	700
	ΠI.	Unit prefixes	700
	IV.	Units	701
	V.	CHEMICAL ELEMENTS	702
	VI.	CHEMICAL FORMULAE COMMONLY USED IN THIS DOCUMENT	703
VII		ACRONYMS AND TECHNICAL DEFINITIONS	
D	EEED	ENCES	700

xvi

List of Figures

Figure 1.1:	Refinery sulphur balance trend up to 2010	5	
Figure 1.2:	Percentage of biofuel blend		
Figure 1.3:	World bioethanol fuel production		
Figure 1.4:	Global Potentials 2007)		
Figure 1.5:	Global oil refining throughputs		
Figure 1.6:	Major gasoline and diesel trade to and from the EU		
Figure 1.7:	Geographical distribution of the European refineries		
Figure 1.8:	Capacity of the various processes in the EU-27 refineries (O&GJ 2011)		
Figure 1.9:	Nelson complexity index dispersion for some European refineries per country		
Figure 1.10:	Distribution of refineries in the EU+ according to the Nelson complexity index		
Figure 2.1:	General scheme of a complex oil refinery		
Figure 2.2:	Simplified process flow scheme for a HF alkylation unit		
Figure 2.3:	Simplified process flow scheme for sulphuric acid alkylation		
Figure 2.4:			
- 1g.a.c 2	options units	47	
Figure 2.5:	Simplified process flow scheme of a bitumen blowing unit		
Figure 2.6:	Simplified process flow scheme for a fluid catalytic cracker		
Figure 2.7:	Simplified process flow scheme for a continuous catalytic reformer		
Figure 2.8:	Simplified process flow scheme for a delayed coking unit		
Figure 2.9:	Simplified process flow scheme for a flexicoker		
Figure 2.10:	Simplified diagrams of the cooling systems used in refineries		
Figure 2.11:	Simplified flow diagram of a crude desalter		
Figure 2.12:	Simplified flow diagram of a fuel gas system.		
Figure 2.13:	Simplified flow diagram of a heavy fuel oil system		
Figure 2.14:	Block flow scheme for an IGCC process		
Figure 2.15:	Typical layout of a boiler feed water preparation unit and a steam boiler		
Figure 2.16:	Simplified process flow scheme of a MTBE production process		
Figure 2.17:	Simplified process flow scheme of TAME production		
Figure 2.18:	Simplified process flow scheme for a part of a gas plant		
Figure 2.19:	Simplified process flow scheme of a distillate hydrodesulphurisation unit		
Figure 2.20:	Simplified process flow scheme of a distinate hydrocracker (single-stage with recycling)		
Figure 2.21:	Simplified process flow scheme of a hydroconversion process (moving bed)		
Figure 2.22:	The four main steps of H ₂ production by steam methane reforming		
Figure 2.23:			
Figure 2.24:			
Figure 2.25:	Condensate separation in a natural gas plant		
Figure 2.26:	Gas dehydration in a natural gas plant		
Figure 2.27:	Simplified scheme of a polymerisation unit		
Figure 2.28:	Simplified process flow diagram of a crude distillation unit		
Figure 2.29:	Simplified process flow scheme of a high vacuum distillation unit		
Figure 2.30:	Simplified process flow diagram of the mercaptan oxidation extraction process		
Figure 2.31:	Simplified process flow diagram of the caustic cascading system (mercaptan oxidation	105	
rigure 2.51.	extraction and sweetening)	106	
Figure 2.32:	Examples of some types of storage tanks		
Figure 2.33:	Simplified process flow scheme for a visbreaking unit		
Figure 2.34:	Simplified process of a thermal gas oil unit.		
Figure 3.1:	Example of specific emissions and consumption in European refineries		
Figure 3.2:	Estimated primary energy consumption distributed by refining process in the US		
Figure 3.3:	Specific energy consumption compared to CO ₂ emissions and site complexity for a	121	
	sample of EU refineries	123	
Figure 3.4:	Use of gaseous fuels and emitted part of sulphur input for a sample of EU refineries		
	sorted by ascending order of specific energy consumption		
Figure 3.5:	Specific water usage data for a selection of European refineries		
Figure 3.6:	Specific water consumption breakdown for a sample of European refineries	127	
Figure 3.7:	Respective weights of the main NO_X -contributing processes for 12 European refineries		
	not operating a FCC unit as a function of their specific emissions (g/t of feed)	129	
Figure 3.8:	Respective weights of the main NO_X -contributing processes for 24 European refineries		
	operating a FCC unit as a function of their specific emissions (g/t of feed)	129	
Figure 3.9:	Influence of the configuration, complexity and specific energy consumption on NO χ		
	emissions	130	
Refining of 1	Aineral Oil and Gas	xvii	

Refining of Mineral Oil and Gas

Refining of Mineral Oil and Gas

Relevant IED Definitions

- Art. 3(11) IED: "BAT reference document" (BREF) = document resulting from the exchange of information under Art. 13 (for defined activities)
- Art. 3(12) IED: "BAT conclusions" = document containing the parts of BREF laying down the conclusions on BAT, their description, information to assess their applicability, the emission levels associated with the BAT, associated monitoring, associated consumption levels and, where appropriate, relevant site remediation measures
- Art. 3(13) IED: "Emission levels associated with the best available techniques" (BAT-AEL) = range of emission levels obtained under normal operating conditions using a BAT or a combination of BAT, as described in BAT conclusions, expressed as an average over a given period of time, under specified reference conditions
- * "Environmental performance levels associated with the best available techniques"
- > BAT-AELS
- Non-emission BAT-AEPLs, including consumption levels (e.g. water), efficiency levels (e.g. energy use) and narrative environmental performance (e.g. waste management with priority to re-use)

Definition of Best Available Techniques (BAT): Art. 3(10) IED

Best

most effective
in achieving a
high general
level of
protection of
the
environment
as a whole

Available

developed on a scale to be implemented in the relevant industrial sector, under economically and technically viable conditions, advantages balanced against costs

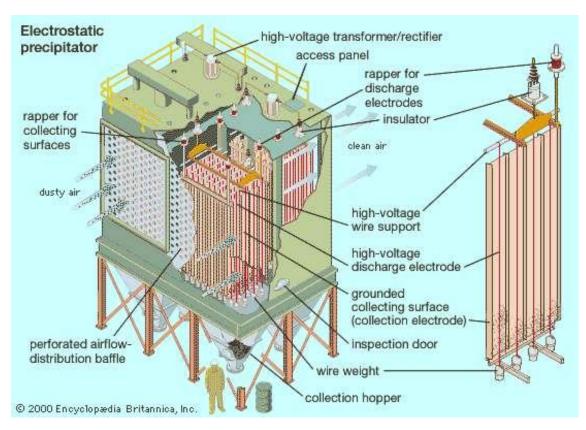
Techniques

the technology
used and the
way the
installation is
designed, built,
maintained,
operated and
decommissioned

(2bis) BAT defined on the basis of 12 criteria listed in Annex III IED

- 1. the use of low-waste technology;
- 2. the use of less hazardous substances;
- 3. the furthering of recovery & recycling of substances generated/used in the process and of waste,
- 4. comparable processes/facilities/methods of operation that tried successfully on industrial scale;
- 5. technological advances and changes in scientific knowledge and understanding;
- 6. the nature, effects and volume of the emissions concerned;
- 7. the commissioning dates for new or existing installations;
- 8. the length of time needed to introduce the best available technique;
- 9. the consumption/nature of raw materials (incl. water) used in the process and energy efficiency;
- 10. need to prevent/reduce to a minimum overall impact of emissions upon envir. and the risks to it;
- 11. need to prevent accidents and to minimise the consequences for the environment;
- 12. information published by public international organisations.

(3(i)) Role of the BAT Conclusions in setting permit conditions – Typical content of BAT Conclusions


- Typically between 15 and 70 Conclusions, including description of techniques as possible BAT and on the basis of which BAT-AEPLs have been set
- Topics covered (depends on sector) could include:
 - Environmental management systems
 - Noise
 - Emissions to soil and groundwater
 - Energy management and efficiency
 - o Odour
 - Management of waste and residues and reuse
 - Monitoring
 - o Emissions to air
 - Emissions to water
 - Water use

Air pollution control, the techniques employed to reduce or eliminate the emission into the <u>atmosphere</u> of substances that can harm the <u>environment</u> or human health. The control of <u>air pollution</u> is one of the principal areas of <u>pollution control</u>, along with <u>wastewater treatment</u>, <u>solid-waste management</u>, and <u>hazardous-waste management</u>.

Control of particulates - Airborne particles can be removed from a polluted airstream by a variety of physical processes. Common types of equipment for collecting fine particulates include cyclones, scrubbers, electrostatic precipitators, and baghouse filters. Once collected, particulates adhere to each other, forming agglomerates that can readily be removed from the equipment and disposed of, usually in a <u>landfill</u>.

cyclone collector, for removing relatively coarse particulates from the air. Small cyclone devices are often installed to control pollution from mobile sources.

electrostatic precipitator, a common particle-collection device at fossil-fuel power-generating stations.

Example of BAT defined in BAT Conclusions on large combustion plants (Section 8 Description of techniques)

8.3. Techniques to reduce emissions of NOx and/or CO to air

Technique

Air staging

Combined techniques for NOX and SOX reduction

Description

The creation of several combustion zones in the combustion chamber with different oxygen contents for reducing NOX emissions and ensuring optimised combustion. The technique involves a primary combustion zone with substoichiometric firing (i.e. with deficiency of air) and a second reburn combustion zone (running with excess air) to improve combustion. Some old, small boilers may require a capacity reduction to allow the space for air staging.

The use of complex and integrated abatement techniques for combined reduction of NOX, SOX and, often, other pollutants from the flue-gas, e.g. activated carbon and DeSONOX processes. They can be applied either alone or in combination with other primary techniques in coal-fired PC boilers.

Example of BAT defined in BAT Conclusions on production of pulp paper and board (Section 1.7 Description of techniques)

1.7.1.2 Techniques for the prevention and control of NOx emissions to air

Technique	Description
Reduction of air/fuel ratio	The technique is mainly based on the following features:
_ _	careful control of air used for combustion (low excess oxygen), minimisation of air leakages into the furnace,
_	modified design of the furnace combustion chamber.
Optimised combustion and combustion control	Based on permanent monitoring of appropriate combustion parameters (e.g. O2, CO content, fuel/air ratio, un-burnt components), this technique uses control technology for achieving the best combustion conditions.
	NOx formation and emissions can be decreased by adjusting the running parameters, the air distribution, excess oxygen, flame shaping and the temperature profile.

Commission > Environment

Training package on Industrial Emissions Directive

In this section you can download training tools that have been developed by the European Commission as a support to all training structures and trainers with a special interest in the Industrial Emissions Directive. They can be used in a European, national or local training context, and be adapted to specific needs and target groups.

What can be found in the training package on the Industrial Emissions Directive?

The present training package aims at facilitating the design and development of training workshops on EU Environmental Assessment Law with special focus on Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) Directives including the following topics:

- Introduction to the EU Industrial Emissions Directive (IED)
- Best Available Techniques (BAT) conclusions
- . Implementation of the IED most important legal issues
- Large combustion plants and their specific situation
- . Enforcement of EU and national law on industrial emissions with a focus on inspections and penalties
- Public participation in the Framework of the EU Industrial Emissions Directive
- · Preliminary reference procedure invoking non-compliance with the EU Industrial Emissions Directive

Material of the training package:

- <u>Documentation on the Topic (collected legislation, CJEU case law, policy documents and reports, Implementation</u>
 <u>Guidelines and Fact Sheets</u>)
- User's and Trainer's Manual
- Presentations on the aforementioned topics (ppt and trainer's notes)
 - David Grimeaud Introduction to the Industrial Emissions Directive (IED) 2010/75/EU
 - David Grimeaud Best available technique (BAT) conclusions
 - Peter Vajda Implementation of the IED most important legal issues
 - Peter Vajda Large combustion plants and their specific situation
 - Vojtech Vomácka Enforcement of EU and national law on industrial emissions with a focus on inspections and penalties
 - Magdalena Bar Public participation and access to justice in the IED
 - · Matthias Keller Preliminary reference procedure in context: Invoking non-compliance with the IED
- Case Studies and their solutions on the aforementioned topics
 - Peter Vajda Case study on the legal issues with regard to the implementation of the IED
 - Peter Vajda Case study on the legal issues with regard to the implementation of the IED Solution
 - Magdalena Bar Case study on public participation in environmental matters with a focus on the IED
 - Magdalena Bar Case study on public participation in environmental matters with a focus on the IED -Solution
 - · Matthias Keller Case study on the role of a judge when dealing with files on the IED preliminary ruling
 - Matthias Keller Case study on the role of a judge when dealing with files on the IED preliminary ruling -Solution
- E-Learning on EU Law on Industrial Emissions

Data on industrial emissions

Information is published annually on emissions from large industrial facilities.

This Europe-wide register provides easily accessible environmental data on industrial facilities in European Union Member States as well as Iceland, Liechtenstein and Norway. For each facility information is provided on the pollutant releases to air, water and land as well as off-site transfers of waste for the year 2007 onwards.

Some information on releases from diffuse sources is also available.

To access this information go to the <u>European Pollutant Release and Transfer</u> <u>Register (E-PRTR)</u>.

How do countries determine Best Available Techniques (BAT) and permit conditions for preventing and controlling industrial pollution?

Relevant industries are selected for BAT-based environmental permitting.

Multi-stakeholder groups are set up to determine BAT, representing government, industry and NGOs.

INFORMATION COLLECTION

Information is collected on pollution prevention and control techniques, emission and consumption levels, and important contextual information.

EVALUATION OF TECHNIQUES AND DATA

The data on techniques and other relevant elements are evaluated, considering technical, environmental and economic criteria.

3

BAT

reference

BAT REFERENCE DOCUMENTS

BAT and associated environmental performance levels (BAT-AEPLs), including emission levels, are established and presented in BAT Reference Documents (BREFs).

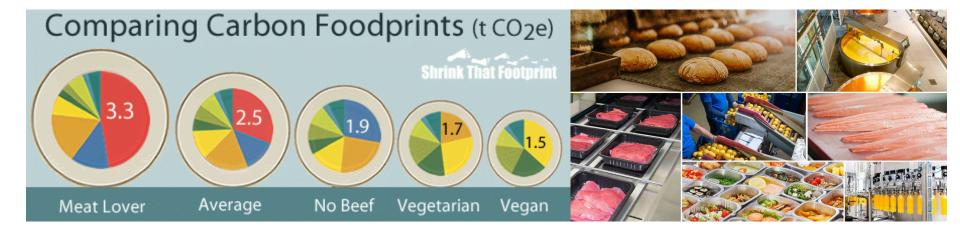
ENVIRONMENTAL PERMITS

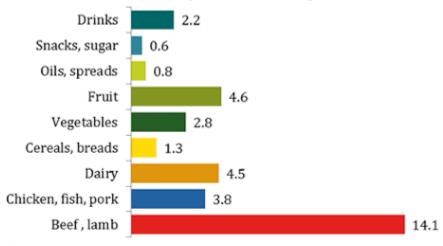
Permit authorities translate the BAT-AEPLs into environmental permit conditions, including emission limit values.

How can countries strengthen their measures to tackle industrial pollution?

By measuring the effectiveness of their Best Available Techniques (BAT) policies - comparing emission trends before and after their introduction using:

Emission data from Pollutant Release and Transfer Registers (PRTRs) or other emissions monitoring systems


Data on industrial production and/or consumption volumes


Information on the environmental permit conditions of industrial installations

Information on installed pollution prevention and control techniques

Carbon Intensity of Eating: g CO2e/kcal

Note: Figures are grams of carbon dioxide equivalents per kilocalorie of food eaten (g CO2e/kcal). Intensities include emissions for total food supplied to provide each kilocarie consumed. This accounts for emissions from food eaten as well as consumer waste and supply chain losses. All figures are based on typcial food production in the USA. Estimates are emissions from cradle to point of sale, they do not include personal transport, home storage or cooking, or include any land use change emissions

Sources: ERS/USDA, LCA data, IO-LCA data, Weber & Matthews

