INTEGRIRANI KEMIJSKI SUSTAVI
Seminar 1

Synthesis of CdS Nanoparticles*
VIRTUAL LAB

Preparation of CdS Nanoparticles/Journal of Chemical Education

*Based upon material developed by the Materials Research Science and Engineering Center on Structured Interfaces at the University of Wisconsin-Madison with funding from the National Science Foundation under award number DMR-1720415. Any opinions, findings, and conclusions or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the Foundation.
1. Synthesis and characterisation of CdS nanoparticles

Fig. 1. (a) Pictorial representation of the synthesis of quantum-sized CdS in reverse micelles; and (b) detail of “water-in-oil” reverse micelle formed by CTAB as surfactant and n-pentanol, as cosurfactant.
2. VELIČINA NANOČESTICE I ENERGIJSKI NIVOI ELEKTRONA

Quantum dots: A Primer

pročitati uvod!
3. Pobuda elektrona – relaksacijski mehanizmi u molekulama (Jablonski dijagram) i nanočesticama
4. IZRAČUN VELIČINE NANOČESTICA
(model efektivne mase i empirijski TEM model)

Effective mass model

\[E_{\text{g\ nano}} = E_{\text{g\ bulk}} + \frac{h^2}{8m_0r^2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*} \right) - \frac{1.8e^2}{4\pi\varepsilon\varepsilon_0r} \]

\[r \ (\text{nanočestice}) = ? \]
Applications of quantum dots as probes in immunosensing of small-sized analytes

Francesc A. Esteve-Turrillas, Antonio Abad-Fuentes

Department of Biotechnology, IATA-CSIC, Agustín Escardino 7, 46980 Paterna, Valencia, Spain

Fig. 1. Dependence of fluorescence emission wavelengths of quantum dots on their chemical composition.
5. Primjena kvantnih točaka u imunosenzorima

3. Funkcionalizacija površine kvantne točke

Fig. 4. Typical particle size of an antibody (A), a QD functionalized by ligand exchange with dihydrolipoic acid (B) and a QD coated with amphiphilic polymer (C).

5. Biokonjugacije (5.1. Primjena aktivnog estera)