In situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen

Roger J. Mortimer*, Thomas S. Varley

Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK

Abstract

The fabrication, in situ spectroelectrochemistry and colour measurement of hybrid electrochromic devices (ECDs) based on a surface-confined metal hexacyanometallate – Prussian blue (PB, containing the iron(III) hexacyanoferrate(II) chromophore) – and aqueous solution-phase methyl viologen ([N,N’-dimethyl-4,4’-bipyridyl]ium) are described. In the ECDs, the initial (‘off’) bleached state is set with PB in its reduced form and the methyl viologen as the di-cation. Switching to the coloured state (‘on’), forms the mixed-valence iron(III) hexacyanoferrate(II) chromophore upon oxidation of iron(II) hexacyanoferrate(II), with simultaneous reduction of the methyl viologen di-cation to form a mixture of the radical cation monomer/dimer. Using the Commission Internationale de l’Eclairage (CIE) system of colorimetry, the colour stimulus of such ECDs and the changes that take place on reversibly switching between the colourless and coloured states have been calculated from in situ visible region spectra recorded under electrochemical control. The concentration of the solution-phase methyl viologen and its diffusion to the cathode controlled both the proportion of surface-confined (reduced) PB that is switched to the blue form and the overall ECD changes. For the ECDs’ ‘on’ states, the CIELAB 1976 colour space coordinates for a D55 illuminant were L* = 60, a* = 3 and b* = −46, and L* = 49, a* = 9 and b* = −59, respectively for 5 and 10 mM methyl viologen solution concentrations. The low a* and high (negative) b* chromaticity coordinates quantified the overall ECD colour stimulus of the ‘on’ state as being deep blue, with a broad absorption across the visible spectral region. CIELAB 1976 colour space coordinates showed that the ECDs were fully transparent and nearly colourless in the ‘off’ states, with L* = 100, a* = 1 and b* = 1. The changes in the transparency were 83.0% (5 mM methyl viologen) and 93.1% (10 mM methyl viologen) between the ‘off’ (bleached) and ‘on’ (coloured) states of the ECDs.

Keywords: Electrochromic, Electrochromism, Prussian blue, Methyl viologen, CIE chromaticity coordinates, Colorimetry

1. Introduction

Electrochromic materials have the property of a change, evocation, or bleaching, of colour as effected either by an electron-transfer (redox) process or by a sufficient electrochemical potential [1,2]. Many chemical materials exhibit two or more redox states with distinct electronic (UV/visible) absorption spectra, which arise from either a moderate energy internal electronic excitation or an intervalence optical charge transfer. Applications of electrochromic materials include ‘smart’ windows [3] and anti-glare car mirrors [4,5], based on modulation of transmitted and reflected visible radiation, respectively. Commercial successes include the electrochromic adjustable-darkening windows that reduce cabin glare in the new Boeing 787 Dreamliner aircraft and Gentex Corporation’s NVS® car mirrors that automatically dim to eliminate headlamp glare. Proposed applications include (non-emissive) controllable light-transmissive or light-reflective display devices for optical information and storage, re-usable price labels, protective eyewear, controllable aircraft canopies, glare-reduction systems for offices, and chameleon fabrics.

When developing electrochromic materials for possible applications, prototype electrochromic devices (ECDs) are generally fabricated using optically-transparent electrodes in a ‘sandwich’ configuration, the primary electrochromic electrode and charge-balancing secondary electrode being separated by a layer of liquid, gel, or solid electrolyte [1,2]. The operating principle is as for a rechargeable thin-film battery; on application of an appropriate electrical potential, the charge/discharge process provides switching between colour states. ECDs are designed to operate in either absorptive/transmissive or reflective modes. For absorptive/transmissive ECDs, the secondary electrode redox reaction is chosen to be a system where there is imperceptible visible colour change or as an electrochromic material where the change in colour is complementary or reinforcing to that at the primary electrochromic electrode, thus providing enhancement of...
the coloured/bleached contrast. ECDs that operate in a reflective mode employ a polished metal (or a reflective coating), in place of or behind, the rear optically-transparent electrode.

We here describe the fabrication, in situ spectroelectrochemistry and colour measurement of hybrid ECDs based on a surface-confined metal hexacyanometallate – Prussian blue (PB, containing the iron(III) hexacyanoferrate(II) chromophore) – and aqueous solution-phase methyl viologen (N,N’-dimethyl-4,4’-bipyridyl)um. Fig. 1 shows the separate spectra of the coloured states of these electrochromic materials. The intense colour of the iron(III) hexacyanoferrate(II) chromophore in PB arises from intercalation charge-transfer (IVCT) between the mixed-valence iron(III/II) oxidation states [6]. Methyl viologen di-cations in solution are colourless, but absorb strongly in the UV region, reductive charge-transfer (IVCT) between the mixed-valence iron(III/II) oxidation states [6].

Fig. 1 shows the separate spectra of the coloured states of these electrochromic materials. The intense colour of the iron(III) hexacyanoferrate(II) chromophore in PB is attributable to the delocalisation of the radical electron throughout the π-framework of the bipyridyl moiety [7]. Viologen radical cations are intensely coloured, with high molar absorption coefficients, owing to optical charge transfer between the (formally) +1-valent and zero-valent nitrogens [7]. In aqueous electrolyte solution, the blue methyl viologen radical cation is in equilibrium with the red methyl viologen cation dimer [8], the resulting observable colour being an intense purple.

We have earlier investigated the in situ colorimetry of thin-film PB [9] and have established that although always described as Prussian blue, this material is tinted with green. We therefore anticipated that in the ECDs’ ‘on’ state, combination of blue (with green tint) and purple would provide deeper coloration, towards black, with a broad spectral absorption in the visible region from the overlap of the spectra of the individual materials (Fig. 1).

![UV-visible region in situ absorbance spectra for the methyl viologen radical cation monomer/dimer system (---) and thin-film Prussian blue (---), each at separate tin-doped indium oxide (ITO)-glass working electrodes. The methyl viologen radical cation monomer/dimer spectrum was recorded at −0.80 V during a 100 mV s\(^{-1}\) potential cycle from 0.00 V → −0.80 V → 0.00 V vs. Ag/AgCl (3.0 M NaCl) reference electrode, in a 6 mM methyl viologen dichloride/1.0 M KCl aqueous solution. The thin-film Prussian blue (6.3 mC cm\(^{-2}\)) was prepared as for the ECD fabrication and was held at +0.50 V vs. Ag/AgCl (3.0 M NaCl) reference electrode in 0.2 M KCl aqueous solution.](image)

In the fabrication of the ECDs described here, the PB is first reduced to the colourless iron(II) hexacyanoferrate(II) form. The colour-forming reactions at each electrode in the PB/methyl viologen ECDs are then shown in Scheme 1, the observed overall colour state being a combination of the two coloured forms.

Earlier reports where the anodically-colouring PB has been paired with cathodically-colouring materials are exclusively restricted to ECDs where the cathodically-colouring material is likewise surface-confined. Thus PB has been paired with tungsten trioxide (WO\(_3\)) (colourless to blue on reduction) [10–12], poly[3,4-(ethylenedioxy)thiophene] (PEDOT) (light blue transmissive to deep blue on reduction) [13], poly[3,3-diethyl-3,4-dihydro-2H-thieno[3,4-b]1,4dioxepine] (PProDOT-Et\(_2\)) (light blue transmissive to deep-blue violet on reduction) [14] and poly(-butyl viologen) (colourless to purple on reduction) [15].

In the present work we show that the extent of the overall colour change may be controlled by the choice of methyl viologen solution concentration and demonstrate how the colour changes may be quantified using CIE (Commission Internationale de l’Eclairage) principles. For application in the field of electrochromism, in 2000 Reynolds and co-workers introduced an in situ colour measurement (‘colorimetry’) method for the precise measurement and control of colour in electrochromic materials and ECDs [16]. This methodology, with use of a simple portable colorimeter, has since been extensively applied to colour measurement of numerous electrochromic conjugated polymer films and devices [17–39], thin films of PB [9], a viologen-based electrochromic plastic device [40], and the n-heptyl viologen system [41]. In the results presented here, chromaticity coordinates and luminance data were calculated from in situ visible region absorption spectra recorded in transmission mode under electrochemical control.

2. Experimental procedure

2.1. ECD fabrication

Tin-doped indium oxide (ITO)-coated optically transparent substrates (Corning 1737 aluminosilicate glass, 25 × 25 × 1.1 mm, \(R_s\) 4–8 Ω\(\square^{-1}\) (CB-50IN-0111)) were from Delta Technologies. Scanning electron microscopy (SEM) here confirmed the uniformity of the 100 nm thick sputtered ITO films. Fig. 2 shows photographs that summarise the ECD construction at four key stages, the design allowing spectral measurements to be made in transmission mode.

The ITO/glass substrates were patterned by wet chemical etching at 50 °C for 90 s in an aqueous solution containing 6 M HCl and 0.2 M FeCl\(_3\)·6H\(_2\)O. The exposed area was defined by masking with ScotchTM Magic Tape (3M), ITO removal at the edges being confirmed by SEM and four-point probe conductance measurements. Although a rectangular shape was chosen here, in
with a thin-film of PB, (c) a separate, etched ITO/glass electrode, with attached spacers, (d) the final ECD whereby the coated electrode has been pre-conditioned and set to its colourless, reduced state prior to its combination with a spacer-ITO/glass electrode, and sealed with epoxy resin.

2.2. Electrochemical, spectroelectrochemical and colour measurement

An ECO Chemie Autolab PGSTAT 20 potentiostat was used for electrode potential control. For the ECD experiments, the potentiostat working electrode lead was connected to the PB-coated ITO/glass electrode, with the counter and reference electrodes' leads shorted together and connected to the second ITO/glass electrode. In situ visible region spectra were recorded in transmission mode using a Hewlett Packard 8452A diode array spectrophotometer. CIE 1931 xy chromaticity coordinates and luminance data were calculated from the spectral absorbance-wavelength data as described earlier [42]. For the simulation of mid-morning to mid-afternoon natural light, the relative spectral power distribution of a D55 constant temperature (5500 K black body radiation) standard illuminant was used in the calculations. Chromaticity coordinates were also transformed to CIE Lab \(L^*a^*b^*\) coordinates, a uniform colour space (CIELAB) defined by the CIE in 1976 [43].

3. Results and discussion

3.1. Spectroelectrochemistry

Separate PB/methyl viologen ECDs were investigated, with both 5 and 10 mM methyl viologen dichloride/0.5 M KCl as the layer of liquid aqueous electrolyte. In order to determine the appropriate switching potentials of each ECD, potentials were applied, starting at the open circuit potential, 0.00 V, and extending in both the positive and negative directions. The optimum switching potentials of the ECDs were established as \(-1.00\) V for the ‘off’ (colourless) state and \(+1.50\) V for the ‘on’ (coloured) state, representing a compromise between enhancing the switching kinetics and avoidance of over oxidation/reduction of the electrochromic materials and/or decomposition of the solvent. For each ECD, measurement of spectral data was repeated six times and found to be coincident. When the measurements were repeated after seven days, using no specific storage conditions and exposed to both light and air, the ECDs exhibited no degradation in appearance and performance. Continuous switching over several hours, holding each potential for 30 s, led to no change in performance of the ECDs. Fig. 3 shows spectral changes in reversibly switching PB/methyl viologen ECDs at the two concentrations between the ‘off’ state (colourless) and the ‘on’ state, which appeared deep blue to the eye.

In our recent work [44] with hybrid ECDs based on the surface-confined metal hexacyanometallate, Ruthenium purple (containing the iron(III) hexacyanoruthenate(II) chromophore)
and solution-based methyl viologen, the anode and cathode reactions simultaneously exhibited reversible colourless to intense purple changes, the overall ECD coloration being colour reinforcing. By contrast, the IVCT band (Fig. 1) in PB appears at a higher wavelength spectral region ($\lambda_{\text{max}} = 710$ nm) than that in Ruthenium purple ($\lambda_{\text{max}} = 550$ nm), the combination of the spectral bands (with $\lambda_{\text{max}} = 678$ nm) of the two colour states in a PB/methyl viologen ECD providing broad absorption (400–780 nm) (Fig. 3(a) to (d)) in the visible region, appearing deep blue by eye. In addition to absorption in the visible region, the spectral peaks below 400 nm (Fig. 3(a) to (d)) are also due to the methyl viologen radical cation monomer/dimer, but do not contribute to the perceived colour.

Interestingly, the total absorbance change for the 5 mM methyl viologen ECD (Fig. 3(a), (b), (e)), was similar to that which would be obtained ($A = 0.77$) at a single electrode with surface-confined PB prepared under the same conditions [9]. That the PB contributes to the visible region absorption is proved by the higher ratio of absorption in this region compared to the spectral peaks below 400 nm, in comparison to the spectral data (Fig. 1) of the methyl viologen radical cation system [42]. Although the amount of solution-phase methyl viologen ($\sim 5 \times 10^{-7}$ mol,
calculated from the product of the ECD internal volume (spacer thickness (0.025 cm) × area (4 cm²) = 0.1 cm³) and the solution concentration (5 × 10⁻⁶ mol cm⁻³), exceeds the amount of surface-confined PB (~2.6 × 10⁻⁷ mol), the ECD does not act as a thin-layer cell, where all solution redox species would be converted. When the ECD is switched ‘on’, not all the methyl viologen in the bulk solution is electrolysed. The concentration of methyl viologen and its diffusion to the cathode therefore control the proportion of surface-confined PB that is switched to the blue form. With use of higher methyl viologen concentrations, a greater depth of colour is accessible, for example, a 10 mM methyl viologen ECD provides a higher total absorbance change of just viologen ECD. Transparency, expressed as changes in the transmittance were 83.0% (5 mM methyl viologen) and 93.1% (10 mM methyl viologen) between the ‘off’ (bleached) and ‘on’ (coloured) states of the ECDs. ECD contrast ratios, expressed as the ratio of the percentage transmitted light in the ‘off’ (bleached) to the percentage transmitted light in the ‘on’ (coloured) states were 6 (5 mM methyl viologen) and 15 (10 mM methyl viologen). Power consumption, expressed as the coloration efficiency (at the ECD was 170 and 86 cm² C⁻¹ for 5 mM and 10 mM methyl viologen, respectively. Compared to measurements for single surface-confined PB electrodes, where switching times were < 1 s, ECD switching times are longer owing to the diffusional limitations of the solution-based methyl viologen system. Switching times, as estimated for 95% of the total absorbance change, were ~10 s, for colouration and bleaching for both the 5 and 10 mM methyl viologen ECDs.

3.2. CIE colour theory

Colour is a subjective phenomenon [45,46], however, much effort has been given to the development of colorimetry (colour measurement) [47], which allows a quantitative description of colour and relative transmissivity as sensed by the human eye. Colorimetry provides a more precise way to define colour than qualitatively interpreting spectral absorption bands. In colorimetry, the human eye’s sensitivity to light across the visible region is measured and a numerical description of the colour stimulus is given. The first attribute for the description of colour identifies its location in the spectral sequence, i.e., what wavelength is associated with the colour. This is known as the hue, dominant wavelength, or chromatic colour, and is the wavelength where maximum contrast occurs. The second attribute, relating to the level of white and/or black, is known as saturation, chroma, tone, intensity, or purity. The third attribute is the luminance of the colour, also referred to as value, lightness, or brightness. Luminance is very informative in considering the properties of electrochromic materials, because, with only one value, it provides information about the perceived transparency of a sample over the entire visible range.

In the present work, a ‘virtual colorimeter’ was used to calculate chromaticity coordinates from the Fig. 3 visible region absorption spectra. The human eye’s cones’ spectral responses are known as l, m and s (long, medium and short) and are linear combinations of the colour matching functions, X,Y and Z, as used for a CIE 1931 2° Standard Observer. The mathematical relationships between the CIE tristimulus values X, Y and Z and the colour matching functions are given by Eqs. (1)–(3), where I(λ) is the normalised spectral power distribution at a given wavelength.

\[
X = \int_{300}^{780} I(\lambda)Y(\lambda) \, d\lambda
\]

\[
Y = \int_{300}^{780} I(\lambda)Y(\lambda) \, d\lambda
\]

\[
Z = \int_{300}^{780} I(\lambda)Y(\lambda) \, d\lambda
\]

The CIE recommends that the integration can be carried out by discrete numerical summation, and such computation is straightforward when using a computer spreadsheet:

\[
X = \sum_\lambda I(\lambda)Y(\lambda)\Delta\lambda
\]

\[
Y = \sum_\lambda I(\lambda)Y(\lambda)\Delta\lambda
\]

\[
Z = \sum_\lambda I(\lambda)Y(\lambda)\Delta\lambda
\]

The normalised spectral power distribution of the sample I(λ) is related to the un-normalised spectral power distribution of the sample φ(λ) by the equation

\[
I(\lambda) = k\phi(\lambda)
\]

where the normalising constant k is

\[
k = 100\sum_\lambda S(\lambda)Y(\lambda)\Delta\lambda
\]

The definition of the spectral power distribution φ(λ) depends upon whether the analysed light is viewed by reflection or transmission. If viewed by reflection then

\[
\phi_r(\lambda) = \rho(\lambda)S(\lambda)
\]

and if viewed by transmission then

\[
\phi_t(\lambda) = \tau(\lambda)S(\lambda)
\]

In the above equations, ρ(λ) is the ideal spectral reflectance, τ(λ) is the ideal spectral transmittance, and S(λ) is the spectral power distribution of the light source, which must be specified. If S(λ)=1, the light source is also ideal i.e., the light source has the same output at all wavelengths. Although chromaticity coordinates can be calculated from reflectance measurements, the spectral data here are all from transmission measurements, therefore, the following equations all involve and refer to transmission (Eq. (10)).

From the experimental transmittance measurements, and with knowledge of the spectral power distribution of the light source, the tristimulus values X, Y and Z of the colour are calculated. For colour representation in 2-D space, the tristimulus values are converted to chromaticity coordinates (x, y, z) by eqs. (11–13)

\[
x = \frac{X}{X+Y+Z}
\]

\[
y = \frac{Y}{X+Y+Z}
\]

\[
z = \frac{Z}{X+Y+Z} = 1-x-y
\]

The luminance factor \(Y_L\) (usually expressed as a %) is defined as the ratio of the luminance of the transmitter (Y) to that of a perfect transmitter (\(Y_0\)) under the same conditions.

\[
Y_L = \frac{Y}{Y_0}
\]
CIE introduced the CIE \(L^\ast a^\ast b^\ast\) (CIELAB) system in 1976, which is a uniform colour space defined to be a geometrical construct containing all possible colour sensations. This CIE \(L^\ast a^\ast b^\ast\) space is formulated in such a way that equal distances correspond to colours that are perceptually equidistant, and is a standard commonly used in the paint, plastic, and textile industries. The values of \(L^\ast\), \(a^\ast\) and \(b^\ast\) are defined as in Eqs. (15)–(17)

\[
L^\ast = 116 \times \left(\frac{Y}{Y_n} \right)^{1/3} - 16
\]

\[
a^\ast = 500 \times \left[\left(\frac{X}{X_n} \right)^{1/3} - \left(\frac{Y}{Y_n} \right)^{1/3} \right]
\]

\[
b^\ast = 200 \times \left[\left(\frac{Y}{Y_n} \right)^{1/3} - \left(\frac{Z}{Z_n} \right)^{1/3} \right]
\]

where \(X_n\), \(Y_n\), and \(Z_n\) are the tristimulus values of a perfect reflecting diffuser (as calculated from the background measurement). In the \(L^\ast a^\ast b^\ast\) chromaticity diagram, \(+a^\ast\) relates to the red direction, \(-a^\ast\) is the green direction, \(+b^\ast\) is the yellow direction, and \(-b^\ast\) is the blue direction. The centre of the chromaticity diagram (0, 0) is achromatic; as the values of \(a^\ast\) and \(b^\ast\) increase, the saturation of the colour increases.

3.3. Colour measurement of the ECDs

Fig. 4 shows the CIE 1931 \(xy\) chromaticity coordinates and relative luminance changes for the two viologen concentration ECDs as calculated from the \textit{in situ} spectra of Fig. 3. The parameters \(x\) and \(y\) represent the red-to-blue ratio, and the green-to-blue ratio, respectively.

We earlier found that the tracks of the CIE 1931 \(xy\) coordinates for (colour-reinforcing) Ruthenium purple/methyl viologen ECDs, gave minimal hysteresis on reversibly switching between the ‘off’ and ‘on’ states. For the PB/methyl viologen ECDs’ (Fig. 4(a) and (c)), there is significant hysteresis, implying that accurate choice of chromaticity coordinates between the fully ‘off’ and ‘on’ states will therefore depend somewhat on the potential direction approached. It is however recognised, that the presence of hysteresis in an ECD may be dependent on the measurement kinetics. In the present work, switching is through potential stepping, as detailed in the caption for Fig. 3. Overlaying the \(xy\) data onto the CIE 1931 colour space template, and extrapolation from the white point (in this case coincident with the colourless ‘off’ state) to the spectral locus, determines the sample hue. The dominant wavelength (\(\lambda_d\)) of the PB/methyl viologen ECD’s colour state was 475 nm, as expected, around halfway between that for PB (488 nm) and the methyl viologen radical cation monomer/dimer system (455 nm).

In CIE theory, colours cannot be specifically associated with a given pair of \(xy\) coordinates, because the third dimension of colour, lightness, is not included in the diagram. The relative lightness or darkness of a colour is very important in how it is perceived, and is presented as the relative or percentage luminance, \(Y_L\), of the sample, to that of the background, \(Y_0\). Relative luminance values can range from 100% for white samples (no light absorbed) to zero for samples that absorb all the light. Fig. 4(b) and (d) show in graphical form the changes in the percentage colorimetric luminance (%\(Y_L\)) on switching between

![Fig. 4](image-url)
On coloration, the iron(II) hexacyanoferrate(II) chromophore is oxidised to the blue (with a green tint) iron(III) hexacyanoferrate(II) chromophore of PB, and the methyl viologen di-cation is reduced to the methyl viologen radical cation monomer/dimer which as a mixture appears purple. The concentration of methyl viologen, and its diffusion to the cathode, controls the proportion of surface-confined PB that is switched to the deep blue form and hence the overall absorbance/colour change of the ECD. Using a calculation method based on the integration of experimental spectral power distributions derived from in situ visible region spectra over the CIE 1931 colour-matching functions, the ECD colour stimulus, and the changes that take place on reversibly switching to the colourless form have been calculated.

4. Conclusion

The fabrication, in situ spectroelectrochemistry and colour measurement of hybrid ECDs based on a surface-confined metal hexacyanometallate – Prussian blue (PB, containing the iron(III) hexacyanoferrate(II) chromophore) – and solution phase methyl viologen (N,N-dimethyl-4,4′-bipyridinium) has been described. On coloration, the iron(II) hexacyanoferrate(II) chromophore is oxidised to the blue (with a green tint) iron(III) hexacyanoferrate(II) chromophore of PB, and the methyl viologen di-cation is reduced to the methyl viologen radical cation monomer/dimer which as a mixture appears purple. The concentration of methyl viologen, and its diffusion to the cathode, controls the proportion of surface-confined PB that is switched to the deep blue form and hence the overall absorbance/colour change of the ECD. Using a calculation method based on the integration of experimental spectral power distributions derived from in situ visible region spectra over the CIE 1931 colour-matching functions, the ECD colour stimulus, and the changes that take place on reversibly switching to the colourless form have been calculated.

Acknowledgement

We thank Loughborough University and the departmental EPSRC Doctoral Training Grant for provision of a research studentship to TSV.

References
