

UNIVERSITY OF ZAGREB

FACULTY OF CHEMICAL ENGINEERING AND TECHNOLOGY

POLYMER SCIENCE AND TECHNOLOGY

Lecturer: Ljerka Kratofil Krehula

krehula@fkit.hr

COPOLYMERIZATION

COPOLYMERIZATION

product: copolymer

- the polymerization of two or more monomers at the same time in the same reaction mixture

The mixture of 2 monomers:

The polymer product with the two different structures in the polymer chain

$$M_1 + M_2 \rightarrow -M_1M_2M_2M_1M_2M_2M_2M_1M_1M_2M_2M_1M_1M_2-$$

- 2 monomers come into copolymer due to the their concentration and reactivity

terpolymerization - 3 monomers **multicomponent** copolymerization – more than 3 monomers

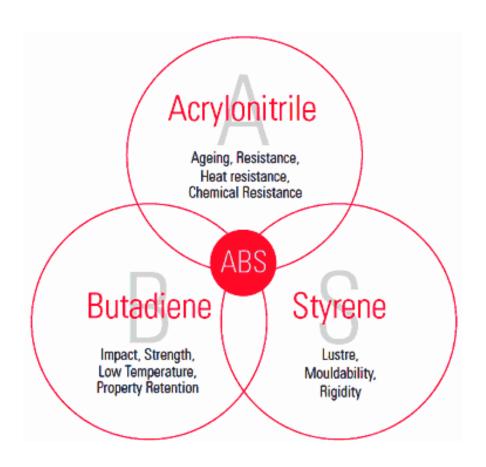
The importance of the copolymerization:

- The creation of the new types of polymer materials
- modification of the properties of the known polymers
- copolymerization allows a synthesis of many different polymer products

The example: polystyrene

 material with a poor tensile strength – it is a very breakable material

n
$$CH_2 = CH \longrightarrow -CH_2 - CH - CH_2$$
styrene polystyrene


The copolymerization of a styrene with other types of monomers expands its application.

- 1. The copolymerization of **styrene** with **acrylonitrile** the higher resistance to the solvents than in the case of the pure styrene
- 2. The copolymerization of **styrene** with **butadiene** the higher elasticity of the material
- 3. The terpolymerization of **styrene** with **acrylonitrile** and **butadiene** many better properties than that of the pure polystyrene

styrene-acrylonitrile, SAN

styrene-butadiene, SBR

acrylonitrile-butadiene-styrene, ABS

Types of copolymers

depending on to the distribution of the repeating units

1) Statistic copolymer

- random structure!

2) Alternated copolymer

 equal quantity of each monomer in the polymer structure

3) Block copolymer

- longer blocks of one monomer in the polymer chain

4) Graft copolymer

- branched copolymer- on the **main chain** of one monomer type **the branches** of the other monomer type are grafted

Nomenclature of copolymers

-copolymer of styrene and methyl-methacrylate: poly(styrene-co-(methyl-methacrylate)) or (methyl-methacrylate)-styrene copolymer

There is also a nomenclature depending on the distribution of monomer units:

-alt- -b- -g- (alternated block graft)

-Grafted copolymer of styrene onto polybutadiene: *polibutadiene-g-polystyrene*

- reactivity of the monomer during propagation depends only on a monomer unit placed at the end of the polymer chain
- there are 4 possible propagation reactions: monomers M₁ and M₂ may be added to the growing polymer chain to the monomers M₁ or M₂:

$$\mathbf{M}_{1}^{\bullet} + \mathbf{M}_{1} \xrightarrow{k_{11}} \mathbf{M}_{1}^{\bullet} \tag{1}$$

$$\mathbf{M}_{1}^{\bullet} + \mathbf{M}_{2} \xrightarrow{\mathbf{k}_{12}} \mathbf{M}_{2}^{\bullet} \tag{2}$$

$$\mathbf{M}_{2}^{\bullet} + \mathbf{M}_{1} \xrightarrow{\mathbf{k}_{21}} \mathbf{M}_{1}^{\bullet} \tag{3}$$

$$\mathbf{M}_{2}^{\bullet} + \mathbf{M}_{2} \xrightarrow{\mathbf{k}_{22}} \mathbf{M}_{2}^{\bullet} \tag{4}$$

- k₁₁ constant of the speed of the reaction for the propagation chain, which ends with the monomer M₁ and the monomer M₁ is added to that chain
- k₁₂ constant of the speed of the reaction for the propagation chain, which ends with the monomer M₁ and the monomer M₂ is added to that chain
- the similar principle is valid for the for the speed
 k₂₁ and the speed k₂₂

- monomer M_1 disappears by the reactions (1) and (3), while monomer M_2 disappears by the reactions (2) i (4)
- the speeds of the disappearance of the monomers from the reaction mixtures are the speeds of their entrance to the copolymer:

$$-\frac{d[\mathbf{M}_1]}{dt} = \mathbf{k}_{11} [\mathbf{M}_1^{\bullet}] [\mathbf{M}_1]$$

$$-\frac{d[\mathbf{M}_1]}{dt} = \mathbf{k}_{21} [\mathbf{M}_2^{\bullet}] [\mathbf{M}_1]$$

$$-\frac{d[\mathbf{M}_2]}{dt} = \mathbf{k}_{12} [\mathbf{M}_1^{\bullet}] [\mathbf{M}_2]$$

$$-\frac{d[\mathbf{M}_2]}{dt} = \mathbf{k}_{22} [\mathbf{M}_2^{\bullet}] [\mathbf{M}_2]$$

The propagation which is going on by the adding of the same type of the monomer to the end of the polymer chain $(M_1 \text{ to } M_2 \text{ to } M_2)$ is called homopropagation.

The propagation which is going on by the adding of the different type of the monomer to the end of the polymer chain (M_1 to M_2 or M_2 to M_1) is called alternating (transitional) propagation.

Mayo equation of copolymerization

$$\frac{d[M_1]}{d[M_2]} = \frac{[M_1](r_1[M_1] + [M_2])}{[M_2]([M_1] + r_2[M_2])}$$

$$r_1 = \frac{k_{11}}{k_{12}}$$
 $r_2 = \frac{k_{22}}{k_{21}}$

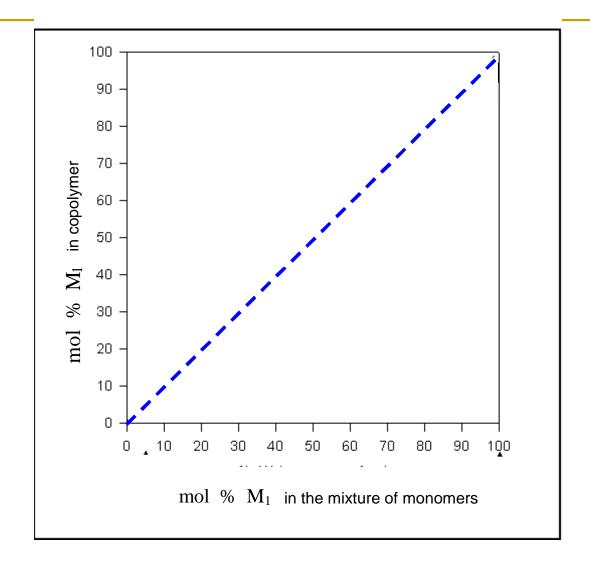
r₁ and r₂ are the ratios of the copolymerization reactivity

Types of copolymerizations

Depending on the ratios of the copolimerization reactivity r₁ and r₂

$$r_1 = \frac{k_{11}}{k_{12}}$$
 $r_2 = \frac{k_{22}}{k_{21}}$

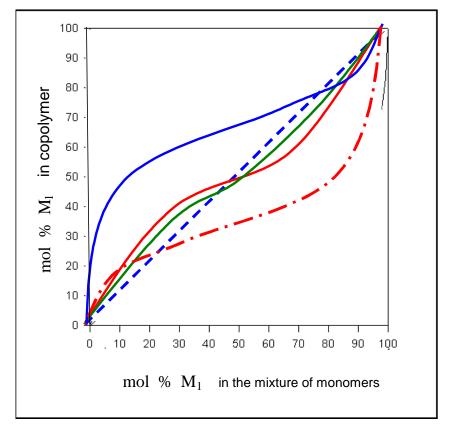
4 types of copolymerizations:

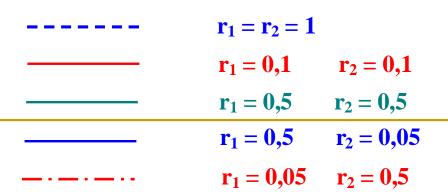

- 1. Ideal copolymerization
- 2. Azeotropic copolymerization
- 3. Simetric copolymerization
- 4. Alternated copolymerization

They are graphically presented as a dependence of copolymer composition on the composition of monomer mixture.

1. Ideal copolymerization

$$r_1$$
 and $r_2 = 1$

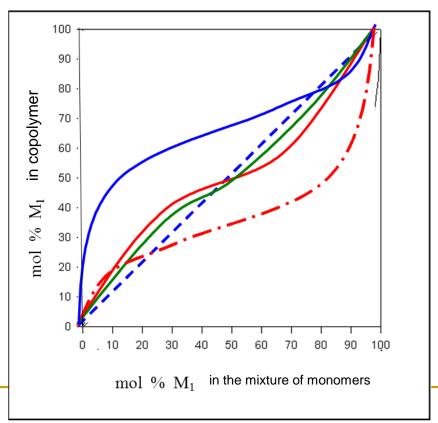

- the propagation species M₁ i M₂ have the same affinity to be added to the first or to the second type of the monomer
- the copolymer with a statistic (random) distribution of the monomer units is formed



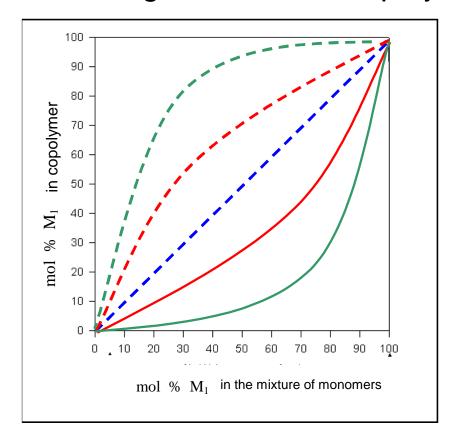
$$----- \qquad \qquad \mathbf{r}_1 = \mathbf{r}_2 = \mathbf{1}$$

2. Azeotropic copolymerization

 $r_1 < 1 i r_2 < 1$

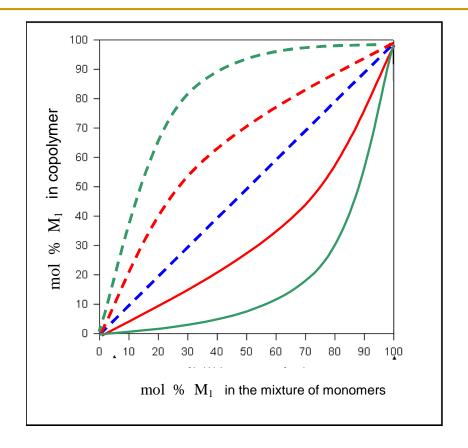


Azeotropic point:


The point at which the curve intersects the diagonal ratio of M_1 in the mixture of monomers = ratio of M_1 in the copolymer

There is a certain tendency of forming of alternated copolymer.

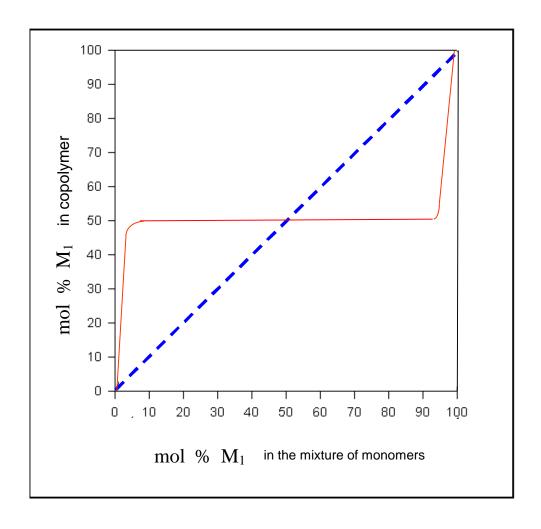
3. Simetric copolymerization


 $r_1 > 1$ i $r_2 < 1$ one of the monomer is more reactive and it will have a higher ratio in a copolymer

$$r_1 = r_2 = 1$$

$$r_1 = 2$$
 $r_2 = 0.5$
 $r_1 = 5$ $r_2 = 0.2$

or $r_1 < 1 i r_2 > 1$

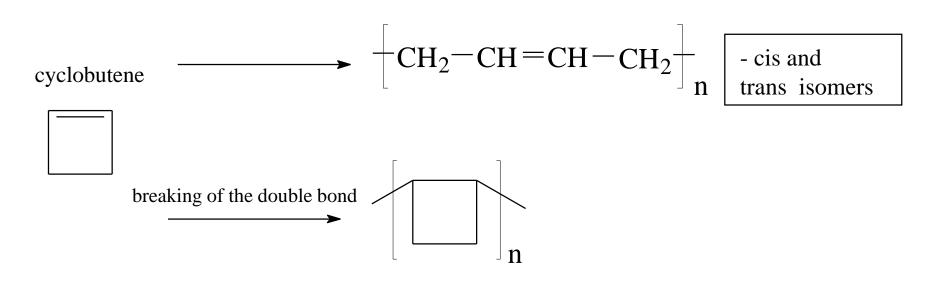

$$r_1 = r_2 = 1$$
 $r_1 = 0.5$ $r_2 = 2$
 $r_1 = 0.2$ $r_2 = 5$

Copolymer will contain higher quantity of the more reactive monomer

4. Alternated copolymerization

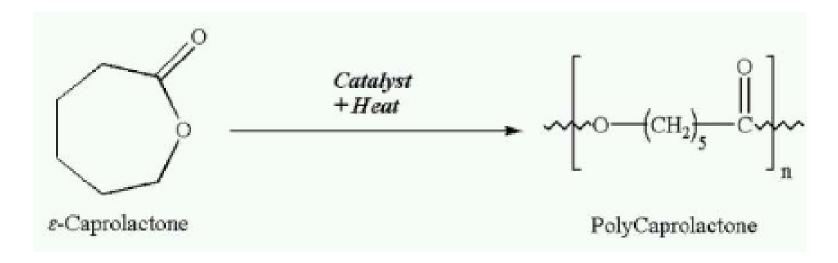
$$r_1 = r_2 = 0$$

- macroradical, which is at the exact moment present in a rection mixture, has an affinity to react only with the other type of the monomer
- M₁ reacts only with M₂,
- M₂ reacts only with M₁
- the formed copolymer is consisted of the same quantity of each monomer!
- The alternated copolymer is formed $M_1 M_2 M_1 M_2$


$$r_1 = r_2 = 1$$
 $r_1 = 0,0095$ $r_2 \approx 0$

RING-OPENING POLYMERIZATION

Monomers - cyclic monomers:


cyclobutene, cyclopentene, norbornene,

cyclobutene

Cyclopentene

caprolactone: polymerization to polycaprolactone (PCL)

IONIC POLYMERIZATION

IONIC POLYMERIZATIONS

They are used to study the mechanism of polymerization reactions.

Some of the products may have intensive colour.

Such polymer products are not commercial.

Long lasting polimerizations, termination occurs only after complete

disappearance of monomer, terminations are rare.

"Living polymerizations"

1. ANIONIC POLYMERIZATION

2. CATIONIC POLYMERIZATION

1. ANIONIC POLYMERIZATION

Initiators are covalent or ionic metal amides, alkyls or aryls.

Reaction of an initiator with a monomer = carbanion:

<u>Initiation</u>:

- a) by metal amides
- b) by electron transfer
- c) by metal alkyls

a) by metal amides:

Polymerization of styrene with potassium amide in liquid ammonia at -33°C.

$$KNH_2 \stackrel{K}{\longleftarrow} K^+ + H_2N^{\bullet}$$
 amide ion

$$H_2N - CH_2 - C^{\dagger}$$

propagating anionic center

$$R_i = k_i [H_2 N:][M]$$

Chain-growth transfer termination to solvent:

$$\begin{array}{c|c} H \\ H_2N + CH_2 - CH + CH_2 - C: - + NH_3 & \underbrace{ktr,S}_{H_2N:} + \\ & \text{active solvent} \\ & \text{Living polymerization!} \end{array}$$

$$+ H_2N + CH_2 - CH + CH_2 - CH_2$$

The final polymer product

2. CATIONIC POLYMERIZATION

Active end of the growing polymer molecule is positive ion. Ion may be carbonium, oxonium, sulphonium ion or quaterly ammonium ions.

Mechanism of cationic polymerization

INITIATION – initiators discharge electrons

a) protonic acids

$$HA + RR'C = CH_2 \longrightarrow RR'C - CH_3(A)^-$$

These are perchloric, sulphuric or phosphoric acid.

b) Lewis acids and Friedel-Crafts catalyzators (AlBr₃, BF₃, SnCl₄, ZnCl₂, TiBr₄)

Example: cationic polymerization of isobutylene

Isobutylene polymerizes with boron trifluoride (BF₃) and H₂O (at -100 °C)

BF₃ is catalyst, and H₂O is co-catalyst

$$BF_3 + H_2O \Leftrightarrow H^+(BF_3OH)^-$$
co-catalyst- catalyst

Example: cationic polymerization of isobutylene

$$H^{+}(BF_{3}OH)^{-} + CH_{3} - C = CH_{2} \longrightarrow (CH_{3})_{3} \stackrel{+}{C}(BF_{3}OH)^{-}$$

$$CH_{3} \qquad initiator ionic couple$$

Shematic view:
$$C + RH \Leftrightarrow H^+(CR)^-$$

$$\mathbf{H}^{+}(\mathbf{CR})^{-} + \mathbf{M} \xrightarrow{k_{i}} \mathbf{H}\mathbf{M}^{+} (\mathbf{CR})^{-}$$

PROPAGATION - ionic pair reacts with a monomer

$$H = (CH_2C(CH_3)_2 + (BF_3OH)^- + (CH_3)_2C = CH_2 \longrightarrow$$

$$H = CH_2C(CH_3) - CH_2C(CH_3$$

<u>TERMINATION</u>

 a) the most common reactions are chain-growth transfer to monomer with formation of unsaturated polymer molecule

$$H = \left\{ CH_{2}C(CH_{3})_{2} \right\}_{n} CH_{2} C(CH_{3})_{2} (BF_{3}OH)^{-} +$$

$$CH_{2} = C(CH_{3})_{2} \longrightarrow$$

active monomer

$$(CH_3)_3^+ C(BF_3OH)^- + H_1^- CH_2C(CH_3)_2^- CH_2^- CH_2^- CH_2^-$$

unsaturated polymer molecule

b) reaction of a chain-growth transfer to monomer with elimination of hydrogen from monomer

$$H = CH_2C(CH_3)_2 + CH_2C(CH_3)_2(BF_3OH)^- + CH_2 = C(CH_3)_2 \longrightarrow$$

active monomer

$$CH_{2} = C(CH_{3}) - CH_{2}(BF_{3}OH)^{-} + H[CH_{2}C(CH_{3})_{2}]_{n}CH_{2}CH(CH_{3})_{2}$$

polymer

41

- c) rearrangement of a propagating ion pair
 - ⇒ Spontaneous termination:

$$H \left[CH_{2}C(CH_{3})_{2} \right]_{n} CH_{2} \stackrel{+}{C}(CH_{3})_{2} (BF_{3}OH)^{-} \longrightarrow$$

$$H^{+}(BF_{3}OH)^{-} + H \left[CH_{2}C(CH_{3})_{2} \right]_{n} CH_{2} C(CH_{3}) = CH_{2}$$

Active again!
Living polymerization!

The first exam:

on Thursday,13th November 2025

- duration of the exam: 60 min, 10:00 11:00
- in written form
- there will be five questions

The second part of the lectures: on Thursday, 20th November 2025

Dr. Zvonimir Katančić, Associate Prof.