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Nuclear magnetic resonance – Basics 

Fundamental properties of particles: 
• mass (interaction with gravitational field) 
• charge (interaction with electric field) 
• spin (interaction with magnetic field) 

electrons, protons, neutrons  spin = +1/2 or -1/2  

Deuterium atom: 
unpaired electron spin  ½ 
unpaired proton spin  ½ 
unpaired neutron spin  ½ 
total nuclear spin  1 

Particle with a net spin can absorb a photon: B 
 – frequency 
 – gyromagnetic ratio 
(42.58 MHz / T for hydrogen) 
B – magnetic field 



Nuclear magnetic resonance – Basics 

spin pairing for nucleons (just as for electrons):  

nuclei with net spin (can absorb photons):  

Nuclei 
Unpaired 
Protons 

Unpaired 
Neutrons 

Net Spin γ (MHz/T) 

1H 1 0 1/2 42.58 

2H 1 1 1 6.54 

31P 1 0 1/2 17.25 

23Na 1 2 3/2 11.27 

14N 1 1 1 3.08 

13C 0 1 1/2 10.71 

19F 1 0 1/2 40.08 

nuclei have to be naturally abundant to make the signal stronger! 



Nuclear magnetic resonance – Basics 

spin of a proton – imagined as a magnetic moment vector:  

 – resonance (Larmor) frequency 

aligning of spins with the external magnetic field:  

aligning is possible only if the movement of the particles is allowed 
NMR is used primarily in solutions – deuterated solvents are used 
solid state NMR is possible – complicated physics 



Nuclear magnetic resonance – Basics 

Continuous wave NMR – the simplest technique  
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Nuclear magnetic resonance – Basics 

Chemical shift – variation in local magnetic fields 

Shielding – electrons circulating around the nucleus will generally produce magnetic 
field that will oppose the applied external one – the nucleus will feel a slightly lower 
field 

 0 1B B  

Deshielding – circulation of -electrons will generally produce magnetic 
field aligned with the applied external one – the nucleus will feel a slightly higher 
field 

Almost every nucleus feels a different magnetic field 
Almost every nucleus absorbs at a slightly different resonance frequency  
The nuclei are easily distinguished? 
 
The absorbance (signal) is proportional to the number of absorbing nuclei 

Chemical shift:  6ref
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Nuclear magnetic resonance – Basics 

Spin-spin coupling 

Same chemical shift – 
equivalent nuclei 

Physically close nuclei 
(up to 3 bond lengths) 
affect each other by 
spin-spin coupling 

Different chemical shift – 
nonequivalent nuclei 

The effect is visible 
on nonequivalent  
nuclei spin up

(aligned)
spin up

(aligned)

spin up
(aligned)

spin up
(aligned)spin down

(opposed)

spin down
(opposed)

spin down
(opposed)

spin down
(opposed)

N

S

energy

allowed transitions:
two distinct energy levels

absorbance



Nuclear magnetic resonance – Basics 

Spin-spin coupling 
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A 1 

AB 1:1 
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AB4 1:4:6:4:1 

AB5 1:5:10:10:5:1 

AB6 1:6:15:20:15:6:1 

Pascal triangle 



Nuclear magnetic resonance – Basics 

Hardware – very very simplified 

https://www.cis.rit.edu/htbooks/nmr/inside.htm 



Nuclear magnetic resonance – Basics 

Hardware – very very simplified 

https://www.cis.rit.edu/htbooks/nmr/inside.htm 



Nuclear magnetic resonance – Basics 

Hardware – very very simplified 

https://www.cis.rit.edu/htbooks/nmr/inside.htm 

https://commons.wikimedia.org/wiki/File:NMR_Bruker_Avance_II_700.jpg 



Nuclear magnetic resonance – Polymer characterization – Copolymer composition 

Analysis of copolymer composition 

F. Bovey, High Resolution NMR of Macromolecules, Academic Press, London, 1972. 



Analysis of copolymer composition 

Nuclear magnetic resonance – Polymer characterization – Copolymer composition 

t-butyldimethylsilyl 

F. Bovey, High Resolution NMR of Macromolecules, Academic Press, London, 1972. 
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Figure 1. 1H NMR spectrum of styrene 
hydrogenated-butadiene copolymer. 

A(St) = Area / 5 
A(H-Butad) = [Area – 3* A(St)] / 8 

%(St) = A(St) / [A(St) + A(H-Butad)]  

Nuclear magnetic resonance – Polymer characterization – Copolymer composition 



A characteristic 1H NMR spectrum of poly(methyl-
methacrylate-co-dodecyl-methacrylate-co-octadecyl-
methacrylate) terpolymer 

A(MMA) = Area(f) / 3 

A(DDMA + ODMA) = Area(g) / 2 
 

%(St) = A(St) / (A(St) + A(H-Butad)  
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Nuclear magnetic resonance – Polymer characterization – Copolymer Composition 



Nuclear magnetic resonance – Polymer characterization – Tacticity 
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Nuclear magnetic resonance – Polymer characterization – Tacticity 

F. Bovey, High Resolution NMR of Macromolecules, Academic Press, London, 1972. 

spinning side band (ssb) 



Nuclear magnetic resonance – Polymer characterization – HEAD-to-TAIL isomerism 

Polyvinylidine fluoride (PVDF) in 19F NMR 
There is no tacticity (no chiral C-atoms) 
There are sequence isomers only (head-to-tail isomerism) 



Nuclear magnetic resonance – Polymer characterization – cis-trans isomerism 

Polybutadiene (PBd) in 13C NMR (in 1H NMR this effect is not visible) 
Three possible arrangements: 1,4-cis; 1,4-trans; 1,2 



Nuclear magnetic resonance – Polymer characterization – Copolymer sequence distribution 

(Vinilydene chloride)-co-isobutylene (VDC-co-IB) in 1H NMR 



Nuclear magnetic resonance – Polymer characterization – Copolymer sequence distribution 

Styrene-co-(methyl methacrylate) (ST-co-MMA) in 1H NMR 
1H NMR data for the calculation of copolymerization reactivity ratios 

Terminal model (Mayo & Lewis) 
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Nuclear magnetic resonance – Polymer characterization – Copolymer sequence distribution 

Styrene-co-(methyl methacrylate) (ST-co-MMA) in 1H NMR 
1H NMR data for the calculation of copolymerization reactivity ratios 

Triad distribution 13C NMR  

Terminal model 
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Nuclear magnetic resonance – Polymer characterization – Copolymer sequence distribution 

Styrene-co-(methyl methacrylate) (ST-co-MMA) in 1H NMR 
1H NMR data for the calculation of copolymerization reactivity ratios 
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Nuclear magnetic resonance – Polymer characterization – Branching in PE 

Two forms of branching in polyethylene: 
 
1) Short chain branching 
 a) copolymerization with another olefin (i.e. butene or octene) 
 b) backbiting in LDPE 
 low degree of solid state crystallinity 
2) Long chain branching 
 c) chain transfer to polymer in LDPE 
 decreasing solid state crystallinity (if significant) 
 affecting melt properties as well 
 
Detected by 13C-NMR: 
The chemical shift: 
 a) depends on the branch length for branches up to six carbons long 
 b) does not depend on length for longer branches. 



Nuclear magnetic resonance – Polymer characterization – Branching in PE 

Classification of carbon atoms: 
a) methylene carbon – bonded to two other C atoms 
b) methine carbon – bonded to three other C atoms 
c) α-carbon – next to a methine carbon 
d) β-carbon – next to an α-carbon 
e) γ-carbon – next to a β-carbon 
f) 2C – second carbon atom from an end of a short branch 
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Nuclear magnetic resonance – Polymer characterization – Branching in PE 

Classification of carbon atoms: 
a) methylene carbon – bonded to two other C atoms 
b) methine carbon – bonded to three other C atoms 
c) α-carbon – next to a methine carbon 
d) β-carbon – next to an α-carbon 
e) γ-carbon – next to a β-carbon 
f) 2C – second carbon atom from an end of a short branch 


