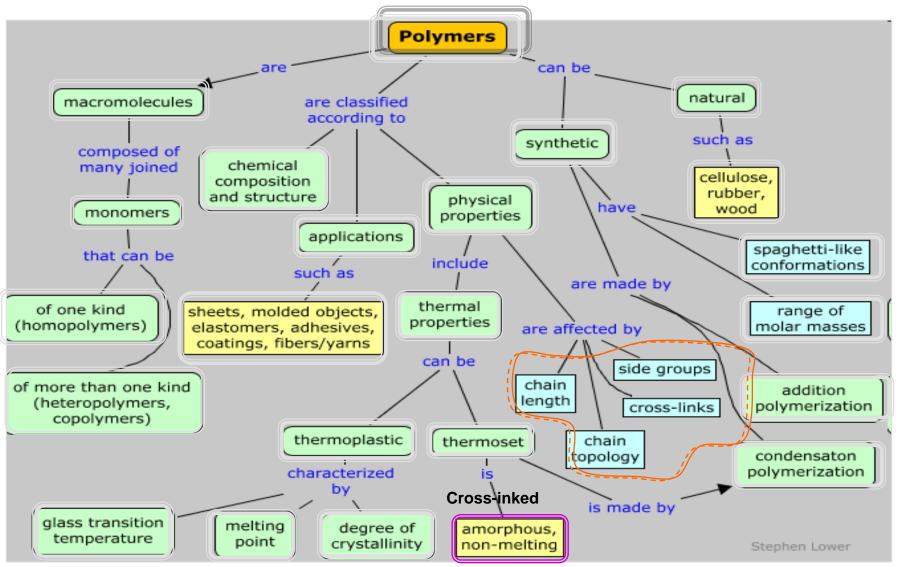


UNIVERSITY OF ZAGREB FACULTY OF CHEMICAL ENGINEERING AND TECHNOLOGY


POLYMER SCIENCE AND TECHNOLOGY

Lecturer: Dr. Ljerka Kratofil Krehula, Associate Prof.

krehula@fkit.hr

POLYMERS

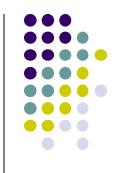
-classified by their chemical structure, properties and applications.

Classification of polymerization reactions:

according to:

- 1. mechanism of chain growth
- 2. media of polymerization

1. Polymerizations by the mechanism of chain growth

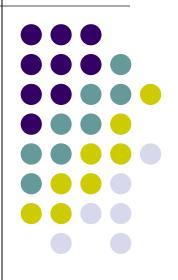

Mechanism of chain growth

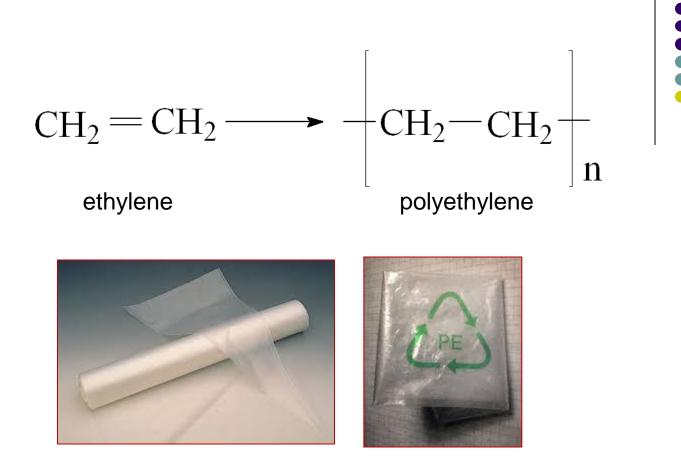
RADICAL POLYMERIZATION

STEP BY STEP POLYMERIZATION

Mechanism of chain growth (type of reaction)

1. free-radical polymerization

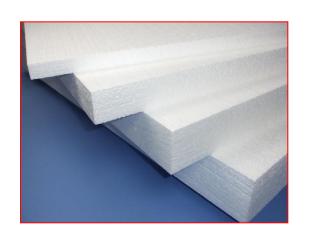

addition polymerization, chain-growth of polymer


- I. initiation
- II. propagation
- III. termination

step by step polymerization condensation polymerization, stepwise growth of polymer

```
monomer + monomer → dimer
dimer + monomer → trimer
dimer + dimer → tetramer
trimer + monomer → tetramer etc.
```

1. FREE-RADICAL POLYMERIZATION



Low density polyethylene is produced by free radical polymerization.

styrene

(vinyl-benzene)

Free-radical polymerization

Three phases:

- I. initiation
- II. propagation
- III. termination

1. Initiation – initiator decomposition

$$I \xrightarrow{k_d} 2R^{\bullet}$$

$$\mathbf{R}^{\bullet} + \mathbf{M} \xrightarrow{k_i} \mathbf{R} \mathbf{M}^{\bullet}$$

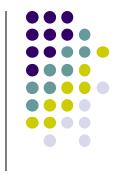
Initiators: specific decomposition temperature!

a) inorganic initiators

hydrogen peroxide, H₂O₂ (O-O bond)

$$HO-OH \xrightarrow{60^{\circ}C} 2OH$$
hydroxyl radical

potassium persulfate, K₂S₂O₈ (O-O bond)


$$KO - S - O - O - S - OK \xrightarrow{40^{\circ}C} 2K^{+} + 2O - S - O$$

$$O = O = O$$

sulfate anion radical

b) Organic peroxides

benzoyl peroxide, DBP (O-O bond)

$$O = C - O - C = O \xrightarrow{65^{\circ}C} O = C - \dot{O}$$

benzoyloxy radical

Di-tert-butyl peroxide (O-O bond)

t-butyloxy radical

t-butylhydroperoxide (O-O bond)

$$\begin{array}{ccc}
CH_{3} & CH_{3} \\
H_{3}C - C - O - OH \longrightarrow H_{3}C - C - O + OH \\
CH_{3} & CH_{3}
\end{array}$$

c) initiators with S-S bond

Tetramethylthiuram disulfide, TMTD

- vulcanization

$$(CH_3)_2 - N - C - S - S - C - N \quad (CH_3)_2 \xrightarrow{60^{\circ}C} 2(CH_3)_2 - N - \overset{\bullet}{C} + S_2$$

$$\overset{\circ}{S} \qquad \overset{\circ}{S}$$

d) Initiators with N-N bond α,α' -azobisisobutyronitrile, AIBN

2-cyano-2-propyl radical

The example of

free-radical polymerization:

ethylene polymerization

1. Initiation

$$I \longrightarrow 2R$$

 $H_2O_2 \longrightarrow 2OH$ decomposition of initiator

$$R \bullet + CH_2 = CH_2 \rightarrow R - CH_2 - CH_2$$

$$R^{\bullet}+M \xrightarrow{kp} RM^{\bullet}$$

2. Propagation

$$R - CH_2 - \dot{C}H_2 + CH_2 = CH_2 \rightarrow R - CH_2 - CH_2 - \dot{C}H_2$$

$$RM^{\bullet} + M \xrightarrow{kp} RMM^{\bullet}$$

- 3. Termination the end of polymerization
- a) combination

$$RM_n^{\bullet} + M_m^{\bullet}R \xrightarrow{k_{tk}} RM_nM_mR$$

b) disproportionation

$$RM_n^{\bullet} + M_m R \xrightarrow{k_{td}} RM_n + RM_m$$

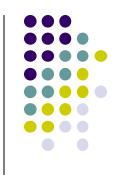
c) chain transfer

$$RM_n^{\bullet} + RH \xrightarrow{k_{tt}} RM_n + R^{\bullet}$$

I- Initiator, R*- radical, M - monomer, k_d - constant of dissociation k_f constant of initiation, k_p - constant of propagation, k_{tk} - constant of transfer with combination, k_{td} - constant of disproportionation, k_{tf} - constant of chain transfer

a) combination

$$RM_n^{\bullet} + M_m^{\bullet}R \xrightarrow{k_{tk}} RM_nM_mR$$



$$R - \left[CH_{2} - CH_{2} - \right] CH_{2} - \overset{\bullet}{C}H_{2} + \overset{\bullet}{C}H_{2} - CH_{2} - \left[CH_{2} - CH_{2} - \right] R \rightarrow$$

$$R - [CH_2 - CH_2 -]CH_2 - CH_2 - CH_2 - CH_2 - [CH_2 - CH_2 -]R$$

Product: one polymer chain

b) disproportionation

$$RM_n^{\bullet} + M_m R \xrightarrow{k_{td}} RM_n + RM_m$$

$$R - [CH_2 - CH_2 -]CH_2 - \dot{C}H_2 + \dot{C}H_2 - CH_2 - [CH_2 - CH_2 -]R \rightarrow$$

$$R - [CH_2 - CH_2 -]CH_2 - CH_3 + CH_2 = CH - [CH_2 - CH_2 -]R$$

terminated polymer chain

Double bond can be attacked by radical

- new polymerization starts

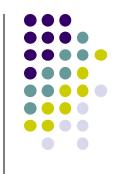
Product: two polymer chains

c) chain transfer – transfer of polymerization reaction to "something else" in a recation mixture – in general, it is not favorable type of termination

$$R - [CH_2 - CH_2 -]CH_2 - CH_2 + RH \to R - [CH_2 - CH_2 -]CH_2 - CH_3 + R$$

RH may be initiator solvent monomer polymer

Chain transfer with initiator

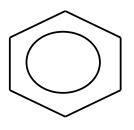


Initiator forms the first radicals, then attacks monomer and forms further radicals.

Chain transfer with initiator rarely happens - the added quantity of initiator is very small (0,1%).

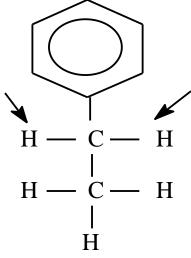
At the end of polymerization there is no initiator.

Chain transfer with solvent

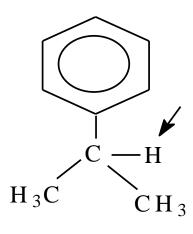


Solvent is always present except at polymerization in bulk.


Aldehides and ketones are very good chain transfer solvents because of easy discharge of H-atom.



benzene




toluene

ethylbenzene

tri phenylmethane

Chain transfer with monomer

Chain transfer with monomer rarely happens, because at the and of polymerization there is no monomer any more.

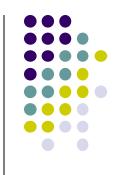
Very reactive monomer is vinyl-acetate

$$CH_{2} = CH$$

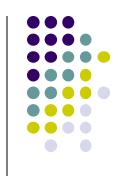
$$O$$

$$C = O$$

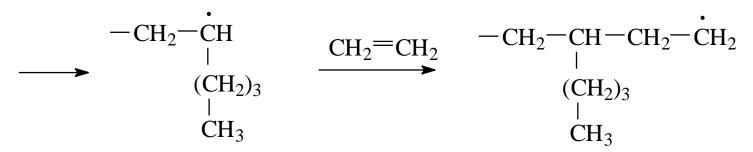
$$CH_{3}$$



Chain transfer with polymer


Product: branched or crosslinked polymer

It is the most common chain transfer, because at the end of polymerization there are only solvent and polymer. During a free radical polymerization, there is always a possibility for polymer branching.



the terminated polymer chain

very interesting polyethylene chain transfer:
 chain reacts with its own chain – intramolecular bonding

$$-CH_{2}-CH_{2}-CH_{2}-CH_{2}-\dot{C}H$$

This reaction is called ****ackbiting**** - it means "to bite its own tail".

STEP BY STEP POLYMERIZATION condenzation polymerization

- the product of the reaction are polymers and "little" molecules (water, ammonia, CO₂, HCl, N₂, methanol)
- polymerization in which the polymer's molecular weight increases in a slow, stepwise manner as reaction time increases.
- the polymerizations are reversible

Step by step polymerization

- condensation polymerization
- stepwise growth of polymer

```
monomer + monomer \rightarrow dimer dimer + monomer \rightarrow trimer dimer + dimer \rightarrow tetramer trimer + monomer \rightarrow tetramer etc.
```

The product is **polycondenzate**

Step by step polymerization: 2 types

- 1. Two different polyfunctional monomers
 - every monomer has only one type of functional group:

n H₂N-R-NH₂ + n HOOC-R'-COOH →
$$\rightarrow [HN-R-NH-OC-R'-CO]_n + n H_2O$$

or generally:

$$n A-A + n B-B \rightarrow [A-A-B-B]_n$$

diamine

HOOC-
$$(CH_2)_4COOH + H_2N (CH_2)_6NH_2 \rightarrow -[OC-(CH_2)_4-CO-NH-(CH_2)_6NH]- + 2H_2O$$
 adipic acid hexamethylene nylon 6,6 - polyamide

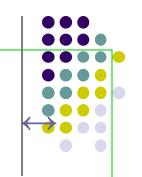
nyien e,e peryann

Production of PET

1. Direct esterification

(The same reaction is in the previous slide.)

2. Ester exchange


H₂COOC (O) COOCH₃ + HOCH₂CH₂OH 1. monomer monomer ethylene-glycol (EG) dimethyl-terephthalate (DMT) HOCH, CH, OOC (O) COOCH,

methyl-2-hydroxyethyl-terephthalate (MHET)

CH₃OH

methanol (M)

HOCH, CH, OOC (O) COOCH, HOCH₂CH₂OH ↔ ethylene-glycol (EG) methyl-2-hydroxyethyl-terephthalate (MHET) HOCH, CH, OOC (O) COOCH, CH, OH + CH₃OH **monomer** 1,4-bis-hydroxyethyleneterephthalate (BHET) methano (M)

3. HOCH₂CH₂OOC COCH₂CH₂OH monomer

1,4-1,4-bis-hydroxyethyleneterephthalate (BHET)

2. One monomer with two types of functional groups:

$$n H_2N-R-COOH \rightarrow [HN-R-CO]_n + n H_2O$$

or generally:

 $n AB \rightarrow [A-B]_n$

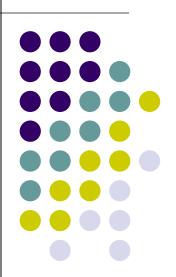
Example: polyamide

$$nH_2N(CH_2)_5COOH \rightarrow [(CH_2)_5CONH]_n + nH_2O$$

w-aminohexaacid

nylon 6, perlon - polyamide

Reactions of polymerization are classified according to:


- mechanism of chain growth
- media of polymerization

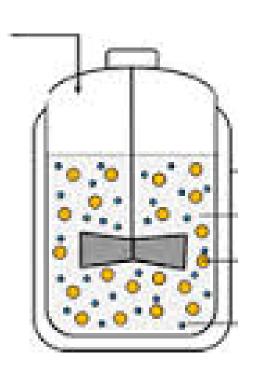
Media of polymerization:

- homogeneous
- heterogeneous

2. Polymerizations by the media of polymerization

Polymerization processes –

in gas, liquid and solid phase (depending on the medium)



Homogeneous polymerizations:

- 1. Bulk polymerization
- 2. Solvent polymerization

Heterogeneous polymerizations:

- 1. Heterogeneous bulk polymerization
- 2. Heterogeneous solvent polymerization
- 3. Suspension polymerization
- 4. Emulsion polymerization
- 5. Polymerization in the gas phase
- 6. Interfacial polycondensations

Homogeneous polymerizations

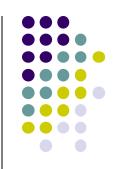
1. Bulk polymerization

- monomer + initiator
- there is no solvent
- only one phase:

monomer and polymer are compatible: unreacted monomer acts as a solvent to polymer

Initiation - in monomeric phase usually with organic peroxides,

- initiators must be completely soluble in monomer


Limitations of bulk polymerization:

- inefficient heat transfer high concentration of reactants -
- the control of reaction is not efficient
- high viscosity, mixing is difficult
- polymerization is not suitable for industrial processes

For industrial production

 it is necessary to control the chemical and thermal conditions of polymerization.

Example of self-initiated bulk polymerization:

polymerization of vinyl polymers – long exposure to the sun (heat and UV light).

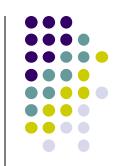
Obtained polymer – properties are not uniform due to the uncontrolled conditions of the polymerization reaction.

2. Solvent polymerization

- homogeneous polymerization
- monomer + initiator + solvent
- only one phase:

Monomer is soluble in solvent.

Polymer is also soluble in solvent.


 solvent acts as diluent in reaction mixture, reduces concentration of monomer

Solvent reduces concentration of reactants

- a decrease of reaction rate
- decrease of molecular weight

Solvent affects:

- molecular weight
- nature of the terminal groups of polymers

The most common solvents: benzene, methanol, ethyl acetate...

Initiators: substances for initiation of a polymerization organic peroxides, often used:

dibenzoil peroxide, DBP

Advantage of solvent polymerization:

very efficient heat transfer
 the heat developed during the reaction is distributed all over the system due to the presence of solvent and reduced concentration of the reactants

- low reaction rate (low concentration of monomer)
- obtaining low molecular weight polymer
- presence of solvent solvent must be removed (evaporated) after polymerization