

1) Course teacher: dr. sc. Miroslav Jerković, Assistant Professor		
2) Name of the course: Mathematics I		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: obligatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
1. Distinguish and correctly use various number structures, their notation and available operations.	 Apply obtained competence in using numbers for quantitative description of physical properties. Use the knowledge of coordinate systems 	
2. Apply coordinate systems (plane, space and higher-dimensional) and corresponding basic mathematical constructions: vectors, matrices and systems of linear equations.	2. Ose the knowledge of coordinate systems, matrices and vectors to model engeneering problems.3. Apply functions and their derivations in analysis of engineering problems.	
3. Use elementary functions, distinguish their graphs and be able to interpret the corresponding relationship between dependent variables.		
4. Master the notion of derivative, as well its physical and geometrical interpretation. Be competent to apply the notion of derivative to model and solve practical problems.		
5. Actively use the corresponding basic procedures in program packages Mathematica or Matlab.		

Teaching unit	Learning outcomes	Evaluation criteria
1. Real and complex numbers	 distinguish natural, integer, rational, real and complex numbers and their notation calculate with real numbers, their approximate values, and learn to estimate their values understand relations among 	 for a given number, determine the number type, its value, its value and equivalent notation, as well as learn how to represent it geometrically execute given operations

	numbers by being able to solve simple equations and inequalities - apply numbers for writing down the values of physical quantities	 with numbers algebraically and numerically, exactly and approximately determine the relation among the given numbers, set and solve a simple equation and inequality interpret a connection among the given physical quantities, as well as among their numerical values
2. Two-dimensional, three- dimensional and n- dimensional real vector space	 define and graphically represent a coordinate system on a line, in plane and in space, as well as understand the generalization to higher dimensions apply the notion of coordinate system to represent geometrical and physical relation between various quantities define analitically a notion of vector in real vector space, use various equivalent notations and be able to use operations on vectors interpret vector and its components form the engineering point of view (forces, velocity etc.) 	 represent a point or a set of points, given by their coordinate values write down the analytical expression representing a geometrical or physical relation between quantities execute given vector operations
3. Some transformations of plane and space – the notion of matrices and linear operators	 define matrix and its elements apply vectors and matrices to write down some basic transformations of plane and space: symmetry, projection, translation, rotation distinguish various types of matrices: square matrix, symmetric matrix, diagonal 	 determine columns, rows, elements, type and order of a given matrix determine the matrix representation of a given transformation, or, vice versa, determine the transformation out of a given matrix representation determine the type of a

	matrix etc.	given matrix
4. Algebra of matrices. Inverse matrix and determinant	 define operations with square matrices, be able to use these operations and compare them with number operations define the notion of inverse matrix and its state its properties define the matrix determinant for matrices of second and third order 	 execute the given matrix operations calculate the determinant of a given matrix of second or third order
5. Scalar, vector and mixed product of vectors	 geometrically define the angle between two vectors define and calculate the scalar product of vectors, and establish a relationship with the notion of angle between two vectors analitically, geometrically and physically define the vector product; learn to calculate it and use it to find the area given by two vectors define the mixed product, calculate it and use it to find the volume determined by three vectors 	 represent a relation between two vectors, regarding the angle between them write down the formulas for scalar product of vectors and for the angle between vectors, and apply them to given vectors write down the formulas for vector and mixed product of vectors, and apply these formulas to given vectors
6. Systems of linear equations and solution methods	 define the notion of a system of linear equations, and its set of solutions define and apply the matrix notation for a system of linear equations solve some simple systems by using, where appropriate, the inverse matrix method, Cramer rule or the Gauss- Jordan method calculate the determinant 	 write a matrix notation of a given linear system solve a given system using the required, or appropriate, method calculate the determinant and inverse of a given matrix, using elementary matrix operations

	and inverse of a square matrix, by using the elementary matrix operations	
7. Notion and geometrical meaning of eigenvalues and eigenvectors (not obligatory)	 define the notions of eigenvalue and eigenvector of a matrix interpret geometrically and physically these two notions determine eigenvalues and eigenvectors in concrete examples explain the special role of symmetric matrices 	 check if a given number (vector) is an eigenvalue (eigenvector) of a given matrix determine and interpret the eigenvalues and eigenvectors of a given matrix of second order
8. Notion of function, its graph and inverse function	 present the notion of a function and interpret it as an operation and notation of a relation between dependent quantities define the notion of a graph of function and the notion of a graph equation state basic properties of functions and graphical interpretion of these properties define the inverse function, its graph and sketch the connection to equation solving 	 calculate the values of a given function and represent those values as points of its graph determine the value of a given function by using its graph interpret the properties of a function if its graph is given and vice versa, represent graphically a function with specific property present a graphical solution of a given equation and estimate the solution graphically
9. Elementary functions. Functions important in engineering and natural sciences.	 define the notion of elementary function, give a list of elementary functions and their inverse functions represent graphically basic elementary functions and their inverse functions (powers and roots, exponential and logarithmic functions, trigonometric and arcus functions) 	 calculate the values of a given elementary function sketch the graph of a given basic elementary function solve a given equation (exponential, logarithmic, trigonometric etc.) exactly, as well as approximately

	 graphically interpret important properties of elementary functions (growth and decline, extremes, convexity and concavity, inflection points) solve equations related to 	
	basic elementary functions	
	- sketch the importance of applying elementary functions on engineering problems	
10. Notion of sequence, limit of a sequence and limit of a function	- define the notion of sequence of numbers and its series, as well as the notion of limit	- determine and write down the expression for the general term of a simple sequence given by its first few terms
	- approximately and exactly determine the limit of some important sequences	 - calculate the limit of a given sequence - calculate the limit of a given
	- define and graphically represent the limit of a function	function
	- state some important limits of functions	
11. Notion of derivative, its geometrical and physical meaning	- present the analytical definition of point derivative of a function, as well as its functional derivative	- using the definition of derivative, find derivatives of some basic functions, as for square root or square power
	- intepret the derivative physically (notion of velocity)	- using the graphical representation, estimate the relative speed of change of
	- intepret the derivative geometrically (notion of inclination)	one quantity, as compared to the other quantity
	- approximately determine the value of derivative by using the graph of a function	
	- use the definition of a derivative to obtain the derivatives of some simple functions (as for power or	

	root functions)	
12. Properties of derivative. Derivatives of elementary functions	 state the properties of functional derivatives and use them to calculate the derivatives list the derivatives of basic elementary functions calculate the derivatives of basic elementary functions (power function, exponential function, sinus and cosinus functions and their inverses) 	 by using the table of derivatives, as well as the properties of the derivative operation, find the derivative of a given polynomial, a product or quotient of given elementary functions find the derivative of a function composed out of given functions from the table of derivatives
13. Linear and quadratic approximation. Taylor series	 list and apply formulas for linear and quadratic approximation of a function geometrically and analytically interpret linear approximation derive the formula for the tangent line in a point of a graph of a function, and be able to interpret it geometrically state the general formula for Taylor series of a function, and present the Taylor series for some basic elementary functions apply Taylor series to approximately calculate values of a given function 	 use the linear and quadratic approximations, as well as Taylor series, to calculate the approximate values of a given function determine linear and quadratic approximations and the Taylor series for x0=0 for the following functions: exp(x), sin(x), cos(x), 1/(1-x)
14. Increasing and decreasing functions, convexity and concavity, inflection points and their physical meaning	 - interpret increse and decrease of a function, as well as local extremes, by using the notion of first derivative, and apply this interpretation to a given problem - inetrpret convexity and concavity, as well as inflection points, by using the 	- apply to a given function

	notion of second derivative, and apply this interpretation to a given problem	
	- distinguish necessary and sufficient conditions in terms of derivatives, for a function to have a specific property stated above	
15. Qualitative analysis of a function by using a notion of derivative.	- use the competence obtained in Teaching unit 14 to some more involved functions	

1) Course teacher: dr. sc. Vesna Volovšek, full professor		
2) Name of the course: Physics I		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
outcomes):	1. Ability to apply the lows of physics	
1. Explaining the physical processes and	2. Acquiring computational skills	
	3. Correlating the acquired knowledge	
2. Analyzing and solving physical problems using mathematical skills (mathematical formulation of physical problems)	4. Application of scientific methods in solving problems	
3. Graphical representation of the laws of physics	5. Deductive and inductive reasoning	
4. Interpretation of the obtained results		
5. Relating the acquired knowledge in solving physical problems		
•••••		

Teaching unit	Learning outcomes	Evaluation criteria
1. Kinematics	- to describe different kinds of motion through kinematic quantities (position, velocity, acceleration)	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
2. Dynamics	 to interpret and apply Newton's lows and the lows of conservation of linear and angular momentum to establish the equation of motion 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions

	 to explain the relationship between different dynamic quantities (force, linear momentum, angular momentum, impulse, torque) to recognize some fundamental forces in nature (Gravity) 	
3. Work and Energy	 to explain the relationship between work, potential and kinetic energy to interpret and apply the law of conservation of energy to derive the potential energy for some conservative forces with their grafical representation 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
4. Oscillations and Waves	 to describe simple harmonic motion and apply its equiation to different periodic motions in nature to describe different kinds of waves by means of characteristic quantities (wavelength, period, frequency, angular frequency, amplitude) 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
5. Heat and Temperature	 to explain relationship between different thermodinamic quantities (heat, temperature, pressure, volume, internal energy, entropy) through thermodynamical and statistical approach. to derive the work done in different thermodynamic processes 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions

1) Course teacher: Svjetlana Krištafor (Assistant Professor), Stjepan Milardović (Associate Professor), Ivana Steinberg (Assistant Professor)

2) Name of the course: General and Inorganic Chemistry

3) Study programme (undergraduate, graduate): Undergraduate

4) Status of the course: Basic

5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:
1. To apply acquired knowledge that is necessary for understanding other branches of chemistry.	natural sciences which are necessary for identification and description of simple engineering problems.
2. To solve chemical problems based on fundamental chemical principles.	2. Organizational and planning abilities necessary to perform simple experiments
3. To demonstrate basic laboratory skills in handling chemical substances.	with available laboratory equipment and devices.
4. To analyse the structure of three different states of matter	3. Recognition of the need for further learning.
5. To argue the properties of individual elements with respect to the position of an	4. The ability to work both independently and in multidisciplinary teams.
element in the periodic table.	5. Learning skills and competences required for further vocational training
6. To identify stable and less stable (unstable) oxidation states of elements.	Tor futurer vocational training.
7. To conclude on the stability of hydrides and oxides of elements based on their electronegativity.	
8. To conclude on the redox behaviour of the substance in elemental form based on standard reduction potential.	
9. To conclude on the reactivity of elements in elemental form based their ionization energy.	
10. To identify the compound based on its chemical formula and to write a chemical formula of inorganic compound based on its name.	
7) Teaching units with the correspond	ing learning outcomes and evaluation

University of Zagreb Faculty of Chemical Engineering and Technology

criteria		
Teaching unit	Learning outcomes	Evaluation criteria
1. Introduction to chemistry; Quantum world; Quantum mechanics.	The student will list the properties of matter and distinguish elements from compounds, pure substances from mixtures of substances. According to the modern theory of the atomic structure, the student will explain the uncertainty principle of quantum mechanics and outline the energy levels and forms of atomic orbitals. Based on the absorption and emission of electromagnetic radiation student will compare the ground and excited states of atoms.	 to identify the property as a chemical or physical, intensive or extensive to distinguish molecules, atoms and ions to describe the structure of atoms to write the electronic configuration of neutral atoms and ions
2. Chemical bonds; Molecular shape and structure;	The student will identify covalent and ionic chemical bonds and give examples of covalent and ionic compounds. The student will define the valence and core electrons from the position of the element in periodic table. The student will write Lewis symbols of elements and apply them when drawing Lewis structures. Based on the quantum theory of chemical bonding, the student will sketch the energy levels of the molecules, write electronic configuration of molecules and estimate the molecular (non)stability.	 to draw the Lewis structures of molecules and ions to determine the dipole character and bonding (ionic or covalent) based on the electronegativity of elements to predict the type, length and strength of chemical bonds to distinguish the hybridization types and explain the difference between sigma and pi bonds

3. Gases, liquids and solids; Reaction thermodynamics; Physical and chemical equilibria; Chemical kinetics; Electrochemistry; Nuclear chemistry	The student will explain the difference between ideal and real gases and compare different states of matter based on the intermolecular interaction. The student will also explain the role of enthalpy in a chemical reaction, estimate (non)spontaneity of the process, determine the speed and order of chemical reaction and estimate its direction. The student will compare the acids and bases. The student will explain the different types of radioactive decay.	 to calculate <i>p</i>, <i>V</i>, <i>n</i> or <i>T</i> at defined conditions using gas laws to outline and explain the types of intermolecular interactions to calculate the change in enthalpy and Gibbs free energy of a chemical (electrochemical reaction) reaction to calculate and analyse the chemical equilibrium constant to calculate the pH of the solution to write and balance the nuclear reaction equation
4. Inorganic chemistry Periodicity of chemical properties (electronegativity, ionization energy, electron affinity, oxidation numbers); The general atomic and physical properties of molecular hydrogen (preparation in industrial and laboratory scale); The 1st group of the elements (alkaline earth metals); The 2nd group of the elements (alkali metals)	The student will explain the periodic trends of the first ionization energy, electronegativity and atomic radii. The student will predict oxidation and reduction trends in periodic table based on standard reduction potentials. The student will compare reactivity of atomic and molecular hydrogen. The student will propose a suitable method for the hydrogen preparation (reduction of water, acid or base) based on standard reduction potential of the metal. The student will explain the typical reactions of alkali and alkaline earth metals.	 to argue the questions based on application of theoretical principles to solve the worked examples applying theoretical knowledge

The 13th group of the elements (boron group) The general chemical properties of the boron group of the elements. Properties of compounds (oxidation states in the range -3 , -1 , 0 , $+1$, $+2$) The 14th group of the elements (carbon group) The general chemical properties of the carbon group of the elements. Preparation, physical and chemical properties of carbon (diamond, graphite, fullerene, graphene) CO and CO ₂ .	The student will recognize stable and less stable oxidation states based on electron configuration of elements. The student will conclude on stability of hydrides and oxides (13th group of elements) based on electronegativity data The student will explain the reactivity of aluminum in elemental state. The student will explain the preparation of polyborates by condensation of B(OH) ₃ . The student will conclude on reactivity in elemental states based on ionization energy. The student will analyse properties of compounds containing the elements in oxidation states -4,-2 and 0 (14th group of elements). The student will explain hydrolysis of tin and lead compounds. The student will explain the preparation of Si(OH) ₄ .	 to argue the questions based on application of theoretical principles to solve the worked examples applying theoretical knowledge
The elements of 15th group (nitrogen group) The general chemical properties of the nitrogen group of the elements. The change of electronegativity along the group, properties of compounds (oxidation states in the range -3, -1, 0, +1, +3, +5). Preparation, use and	The student will conclude on the stability of hydro-oxides, -sulfides, -selenides and tellurides based on electronegativity. The student will conclude on the bond order and magnetic properties of oxygen, oxides, peroxides and superoxides using MO diagram	 to argue the questions based on application of theoretical principles to solve the worked examples applying theoretical knowledge

chemical properties of hydrides of nitrogen, phosphorus, arsenic, antimony and bismuth. The elements of 16th group (chalcogens) The general chemical properties of the chalcogens group of the elements. The properties of compounds (oxidation states in the range -2, -1, 0, +2, +3, +4, +6).	The student will conclude on the molecular and atomic oxygen reactivity. The student will compare the reactivity, acid-base stability and redox properties of ammonia, phosphine, arsine and bismuthine. The student will conclude on the bond order of N ₂ O, NO, NO ₂ , N ₂ O ₃ , N ₂ O ₅ using MO diagram of nitrogen and oxygen.	
The elements of 17th group (the halogens) The general chemical properties of the halogen elements, physical and chemical trends along the group. Oxoacids and their salts (preparation and properties). The elements of 18th group (noble gases) Atomic and physical properties of noble gases. Preparation, production and use. Xenon compounds and derivatives of other noble gases.	The student will analyse the stability and bond order in diatomic halogen molecules using MO diagram. The student will conclude on the hydrohalous and hypohalous acid strength based on electronegativity. The student will draw the Lewis structure of halogen oxoacid and predict its strength.	 to argue the questions based on application of theoretical principles to solve the worked examples applying theoretical knowledge
The properties of metals	The student will compare the stability of complexes of 3d, 4d and 5d elements. The student will analyse quantitatively electron absorption spectra of various	 to argue the questions based on application of theoretical principles to solve the worked examples applying theoretical knowledge

dn systems.	
The student will describe the magnetic properties of metallic complexes and their colour.	

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Marinko Markić		
2) Name of the course: Computer Programming and Application		
3) Study programme (undergraduate, graduate):undergraduate		
4) Status of the course: obligatory		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes):1. Solving simple problems applying Matlab software package2. Solve simple programming problems using structured programming	 The ability to identify, define and solve simple chemical engineering problems The ability to choose and apply appropriate mathematical numerical methods for problem solving 	
3. Identify and explain numerical method for: solving nonlinear algebraic equations, numerical integration, solving ordinary differential equitation	3. The skill to perform mathematical calculations, including error analysis and application of corresponding criteria for acceptability assessment of the results and applied we dely	
4. Apply numerical method for: solving nonlinear algebraic equations, integration, solving ordinary differential equitation	4. The ability to apply basic information and communication technologies	
5. Recognition of the possibilities of scientific resources on the Internet		

Teaching unit	Learning outcomes	Evaluation criteria
1.Programming Basic	 Explain the concept and basic properties of the algorithm Apply an algorithm flow chart Identify the program development phase Apply standard algorithms for: computing the mean numbers, search the smallest and the largest among the numbers, working with natural numbers (addition, 	 Apply the principles of structured programming for the development of standard algorithms Draw a flow chart of the developed algorithm-

University of Zagreb Faculty of Chemical Engineering and Technology

	multiplication, computing factorial, divisibility number with the default number), replace the contents of variables, sorting array elements (Bubble sort) -	
2. Matlab Basic and Matlab programming	Distinguish the data types - Describe working with arrays, vectors and matrices Apply selection structures - Use data entry and printing - Write mathematical expressions with the use of arithmetic, relational and logical operator and appropriate functions, including M-functions - Apply decisions command (single, multiple if statement) - Apply repetition structures (for-end, while-end, nested) - Graphically display data - Apply commands for saving and loading data	 -Define and explain the data types in Matlab, (floating point and single and double precision numbers) - Define variables in Matlab, their distribution - Describe the definition of a series of numbers in Matlab, commands linspace and logspace, - Specify commands for drawing two-dimensional graphs in Matlab and their syntax, specify commands to draw more coordinate system or system within the same graphic windows and their syntax, - Write a program in Matlab script file which includes: data entry, use variables, the assignment statement, arithmetic operations, relational and logical operators, work with arrays, vectors and matrices, application functions, command decisions, repetition, print the results, save results to the file, draw a graph,
3. Errors in Numerical Methods	-Define (specify) sources of error- Give examples of sources of errors	- Describe sources of error

	- Distinguish the sources of error	
4. Iterative Methods for Solving Nonlinear Algebraic Equations	 -Describe methods of solving algebraic equations with one variable (Iterative method, Newton-Raphson, successive bisection, secant, Regula falsi) - Distinguish the methods for solving nonlinear algebraic equations - Explain the method algorithm - Compare the methods 	Draw graphical representation of calculating the roots of the equation - Write algorithm methods and draw appropriate flowchart - Specify which conditions must satisfy the algebraic equation. - Compare the advantages and disadvantages of different methods
5. Numerical integration	 -Describe methods for numerical integration (trapezoid rule, Simpson, Romberg) -Distinguish the methods for numerical integration - Explain the method algorithm - Compare the methods 	Draw methods graphical representation - Write algorithm methods and draw appropriate flowchart - Compare the advantages and disadvantages of different methods
6. Numerical solution of ordinary differential equations	 -Describe methods for the solution of ordinary linear differential equations (Taylor, Euler, Runge-Kutta) - Distinguish between methods - Explain the method algorithm on the example - Choose the appropriate numerical method to solving linear differential equations - Compare the various methods - Compare with the exact numerical solution 	 Draw a methods graphical representation Describe the method algorithm Draw flowchart methods Write a program in Matlab (script file) for a given differential equation and method. The differential equation is defined in a function file. Calculate relative percentage error. Draw a graph with the numerical solution, print the results on the monitor and write them to a file. Compare the advantages

		and disadvantages of various methods
7. Scientific resources on the Internet	 Define basic concepts of data and information Define basic concept of a database Collect information from databases on the Internet Evaluate the relevance of the collected data Develop a critical attitude towards the source of the data collected 	 Apply the keywords and logical operators in searching databases on the Internet Compare the data collected from the internet with respect to their source Argue the use of the data obtained

1) Course teacher: prof. dr. sc. Ivica Gusić, Full Professor / dr. sc. Miroslav Jerković, Assistant Professor			
2) Name of the course: Mathematics II			
3) Study programme (undergraduate, graduate): undergraduate			
4) Status of the course: obligatory			
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:		
 outcomes): 1. Apply indefinite integral to problems inverse to the derivative problem 2. Use definite integral to solve the problem of area and apply it in solving engineering problems 3. Adopt the notion of a function of several variables, its derivatives and integral, and apply it to study the relations among several dependent quantities 4. Use differential equations of first and second orders to solve mathematical and physical problems 5. Actively use the corresponding basic procedures in program packages Mathematica or Matlab. 	 Apply the indefinite and definite integrals to model an engineering problem. Apply the differential calculus of functions of several variables to model an engineering problem. Use ordinary and partial differential equations to model an engineering problem. 		

Teaching unit	Learning outcomes	Evaluation criteria
	- define the primitive function and indefinite integral of a function	- for a given elementary function determine a primitive function
computation methods.	- show competence in using the basic properties of indefinite integral, and in applying them in calculations	 check if a give function is a primitive function of a given function introduce an appropriate
	- apply methods of partial	substitution to a given

	integration and substitution	integral
	- apply indefinite integral to solving some simple engineering problems	- derive the differential equation of radioactive decay and solve it by integration
		- derive the differential equation of the vertical shot and solve it by integration
2. The area problem – definite integral. Leibnitz- Newton formula.	- establish a connection between the problem of area under curve and the notion of definite integral	- represent geometrically and estimate the value of the definite integral of a given simple function
	- interpret geometrically and estimate the definite integral for a positive, as well as for a general function	- calculate the value of the definite integral of a given simple function
	- calculate the definite integral by using the Leibnitz-Newton formula	
	- sketch and geometrically interpret the properties of definite integral	
3. Methods for calculating the definite integral. Improper integral.	- derive and apply the formula for partial integration of the definite integral	- using the method of partial integration, calculate the appropriate definite integral
	- derive and apply the formula for integration by substitution of the definite integral	 using the method of substitution, calculate the appropriate definite integral calculate and represent
	- define and represent graphically the improper integral	graphically the improper integral of a given function
	- calculate the given improper integral	
4. Geometric application of definite integral.	- use the definite integral to calculate the area of plane domain	- represent graphically, estimate and calculate the area of a plane domain bounded by given curves
	- derive and apply the formula for volume of the rotational body	- calculate the volume of a ball

		- calculate the volume of a cone
5. Application of definite integral to natural sciences.	 apply the definite integral to calculate the mass, barycentre and moment of inertia of a nonhomogeneous line segment with a given mass density function explain above formulas use the definite integral to interpret the problem of a work of a line force 	 calculate the mass of a nonhomogeneous segment with a given mass density function estimate and calculate the barycentre of a nonhomogeneous segment with a given mass density function; interpret the result calculate the moment of inertia for a nonhomogeneous segment with a given mass density function calculate the work of a line force given by F(x)=-kx; interpret the result
6. Notion of a function of two variables, its graph and partial derivatives.	 define a function of two variables and apply it to the problem of a relation among three dependent quantities determine the domain of a function of two variables, and evaluate it define and calculate the partial derivatives of first and second order for a function of two variables physically and geometrically interpret the first order partial derivatives at a given point of a function of two variables 	 determine the natural domain of a given function of two variables determine partial derivatives and partial derivatives at a particular point for a given function of two variables
7. Linear and quadratic approximation of a function of several variables.	 write down the formula for linear approximation of a function of two variables and comment on analogy with the case of single variable apply linear approximation to calculate the approximate 	 determine linear and quadratic approximation for a given function of two variables determine the increment and approximate increment for a given function of two

	-	
	values	variables
	- write down the formulas for increment and approximate increment of a function of two variables and comment on analogy with the case of single variable	
	- apply the formula for the approximate increment of a function	
	- write down and apply the formula for quadratic approximation of a function of two variables	
8. Local extremes of a function of several variables.	- define the local extremes for a function of two variables and comment on analogy with single variable	- determine the local extremes for a given function of two variables
	case	- apply the local extreme
	- state and explain the necessary conditions for local extremes	minimization problem
	- apply the above criterion, by using partial derivatives of first and second order	
	- apply the above criterion to solve some mathematical and engineering problems (the minimization problem)	
9. Multiple integrals – consecutive integration.	- define the notion of definite integral for a positive function of two variables along the plane domain, and interpret it as a volume	 represent graphically the integral of a given positive function of two variables calculate the integral of a given function of two
	- by using the formula for consecutive integration, calculate the definite integral	variables, over a given plane domain - introduce the appropriate
	on the given domain - define and calculate the definite integral of a general function	polar substitution in a given integral

	- apply polar coordinates to calculate the definite integral of a function of two variables.	
10. Application of the multiple integral.	 interpret the distribution of mass for a nonhomogeneous plane domain using the mass density function sketch the derivation of the formula for the mass of a nonhomogeneous plane domain using its mass density function apply formulas for determining the mass and barycentre of a nonhomogeneous plane domain 	 calculate the mass of a given nonhomogeneous plane domain estimate and calculate the barycentre of a given nonhomogeneous plane domain
11. The notion of ordinary differential equation, integral curve and initial conditions.	 state the general form of ordinary differential equations of first and second order define the general and particular solutions solve some simple differential equations and graphically represent the solution via integral curves define initial conditions and their role 	 determine the order of a given differential equation check if a given function represents a solution of a given differential equation find and represent graphically the general solution of a given simple differential equation
12. Application of ordinary differential equations. Cauchy's problem.	- state and solve the Cauchy problems of first and second order and interpret them physically	 derive and solve the Cacuhy problem of cooling (heating) derive and solve the Cauchy problem of linear motion with constant force applied derive the Cauchy problem of a oscillation of a particle along a line
13. Methods for solving some types of first and second	- apply the method of	- solve a given differential equation of first or second

FORM 2

order ordinary differential	variable separation	order
equations.	- state and solve homogeneous and nonhomogeneous linear differential equation of first order	- solve the Cauchy problem of a oscillation of a particle along a line; interpret the solution
	- state and solve homogeneous and nonhomogeneous linear differential equation of second order with constant coefficients	
14. The notion of partial differential equation, its solution and initial and boundary conditions.	 state the general form of partial differential equations of first and second order define and physically interpret initial and boundary conditions 	
15. Application of partial differential equations (not obligatory).	- state the differential equations for vibration of a string and heat conduction, together with the corresponding initial and boundary conditions	

1) Course teacher: dr. sc. Vesna Volovšek, full professor		
2) Name of the course: Physics II		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes):	1. Ability to apply the lows of physics	
1. Explaining the physical processes and	2. Acquiring computational skills	
	3. Correlating the acquired knowledge	
2. Analyzing and solving physical problems using mathematical skills (mathematical formulation of physical problems)	4. Application of scientific methods in solving problems	
3. Graphical representation of the laws of physics	5. Deductive and inductive reasoning	
4. Interpretation of the obtained results		
5. Relating the acquired knowledge in solving physical problems		

Teaching unit	Learning outcomes	Evaluation criteria
1. Electrostatics	- to describe different kinds of electric phenomena and interactions through electrostatic quantities (charge, Coulomb force, electrostatic energy, potential and voltage, electric current)	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
2. Magnetostatics	- to explain the origin of magnetic phenomena and interactions and to establish the conections between different quantities (magnetic field, electric current, Lorentz	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions

	force)	
3. Alternating electric and magnetic fields	 to explain the relationship between alternating electric and magnetic fields to describe the applications (alternating current, electromagnetic waves) 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
4. Optics	- to explain and apply the laws of geometric and wave optics to different optical instruments (mirrors, lenses, gratings)	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
5. Fundamental principles of quantum physics	 to explain differences between classical and quantum quantities to apply quantum mechanical description to some phenomena in micro world 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions

Г

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. dr. sc. Veljko Filipan		
2) Name of the course: BASICS OF MECHANICAL ENGINEERING		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. apply basic rules and standards in engineering graphical communication	1. apply fundamental principles for identification and description of simple engineering problems	
2. apply principles of engineering mechanics to simple systems	2. define and solve simple engineering problems with relevant methodologies and available program packages	
3. define connection between loads, stresses and strains4. differentiate basis loading formula sizes	3. apply basic information and communication technologies	
 4. differentiate basic loading form on simple structure elements 5. interpret basic materials properties and testing methods 	4. learning skills and competences required for further vocational training	
	5. the ability to collect information from various sources	

Teaching unit	Learning outcomes	Evaluation criteria
1. basics of engineering graphics	 apply basic rules and standards in engineering graphical communication apply graphical symbols for process schemes 	 sketch orthogonal projections of simple equipment parts on the basis of isometric view mark dimensions of simple elements on technical sketch draw simple process scheme with some particular elements
2. fundamentals of applied mechanics	- apply fundamental principles of engineering	- simplify the connections between bodies in simple

	mechanics to analysis of simple elements	multibody systems and define the equilibria conditions
	- define equilibria conditions of simple engineering problems	- generate diagrams of internal forces of simple beams
	- understand stresses and strains caused by different loads	- calculate stress and strains in rods under different simple loads
	- differentiate calculated, real and allowable stress and strain	 -calculate thermal stresses of simple rods - determine dimensions of simple loaded elements
3. basic properties of engineering materials and testing methods	 explain interconnections between internal structure and properties and the application of engineering materials differentiate mechanical, 	 sketch and explain diagrams for static and dynamic testing methods results use real properties of materials for dimensioning of simple structure elements
	chemical, physical and technological properties of materials and their testing methods	- interpret mechanical, chemical, physical and technological properties of materials

1) Course teacher: Zvonimir Glasnovic, Associate Professor		
2) Name of the course: Fundamentals of Electrotechnics		
3) Study programme (undergraduate, graduate): Chemical Engineering, Applied Chemistry, Environmental Engineering		
4) Status of the course: Undergraduate		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
1. Apply the basic principles of electrical engineering to solve basic circuits;	1. Analyze complex circuits;	
2. Apply the analogue electronic circuits in chemical engineering problems;	Electronics in the development of chemical engineering processes;	
3. Apply digital electronic circuits (CPU, sensors, actuators etc.) and a digital computer to manage complex technological processes in chemical engineering;	3. Use the systems and methods for monitoring and controlling of the technological processes;	
4.Identify techniques for protection of electric shock;5. Manipulate with electronic instrumentation.	4. Apply a systematic approach to solving problems of electrical engineering and electronics in chemical engineering.	

Teaching unit	Learning outcomes	Evaluation criteria
1. Basic principles of electrical engineering and electronics	 Explain the principle representation engineering systems (diagram); Explain the concept of electric current and the effects that it causes; Explain the concept of density of electric current; Explain the concept of electric voltage and methods for its preparation; Explain the concept of 	 Sketch basic block diagram of electrical system; Solve relationship between current, charge and time in battery; Calculate load of electric conductors; Calculate four characteristic values of resistor; Calculate any of the required values of electrical

	 electrical resistance; Explain the variation of resistance with temperature; Analyze superconductivity conditions and material. 	resistor.
2. Basic DC circuits	 Interpret basic relationships in electrical circuits and connect them to the universal energy principles; Interpret Ohm's law; Interpret the voltage distribution in resistors (voltage drop); Interpret current distribution on resistors; Interpret resistors in series connection; Interpret resistors in parallel connection; Interpret resistors in complex network; 	 Solve elementary circuit; Analyze the current-voltage conditions in elementary circuit; Demonstrate current-voltage characteristics in the elementary circuit; Analyze current-voltage conditions in a series connection of resistance; Analyze the current-voltage conditions in a parallel resistance; Analyze the current-voltage opportunities in complex circuits.

1) Course teacher: Šime Ukić		
2) Name of the course: Analytical Cher	nistry	
3) Study programme (undergraduate, graduate): undergraduate study – Chemical Engineering		
4) Status of the course: obligatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
 To define analytical system in accordance with technological process. To relate principles of chemical equilibrium with methodology of analysis in technological process. To apply methods of selective separation of inorganic anions and cations in chemical engineering. To apply methods of gravimetric analysis in chemical engineering. To apply methods of volumetric analysis in chemical engineering. 	 To apply basic knowledge from natural science in identification and description of simple engineering problems. To plan simple experiments by applying available laboratory equipment. To analyse technological process. 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Analytical system in chemical engineering	- To define analytical system in accordance with technological process.	 To define analytical method. To recognize a mode for determination of analytical signal and to obtain analytical result To express significant digits. To differentiate method's accuracy and precision

2. Qualitative chemical analysis of technological processes	 To relate principles of chemical equilibrium with methodology of analysis in technological process. To apply methods of selective separation of inorganic anions and cations in chemical engineering. 	 To compute solution's pH value. To compute conditions of inorganic salts precipitation. To compute conditions of complex formation To compute redox potential To plan systematic analysis of cations and anions To compute possibility for executing the planed systematic analysis To apply principles of dissolution of inorganic salts
3. Quantitative chemical analysis of technological processes	 To relate principles of chemical equilibrium with methodology of analysis in technological process. To apply methods of gravimetric analysis in chemical engineering. To apply methods of volumetric analysis in chemical engineering. 	 To plan the steps in gravimetric analysis To differentiate types of sediments' contamination and how to prevent or remove the contamination To differentiate properties of sediment related to the particle size To compute result in gravimetric analysis To plan steps in volumetric analysis To differentiate endpoint and equivalence point in titration To select indicator and method for detection of titration end-point. To compute result of

	volumetric analysis
	- To compute all points on titration curve

English language I (basic course)

COURSE AIM: Gaining competences like reading, oral and written fluency in the English language related to chemistry. Individual classification of new vocabulary by using the online dictionaries to acquire correct pronunciation and placing it in the e-class glossary. As part of the course students will infer basic vocabulary of chemical terminology in English, adjectives that describe the various states of matter, compounds and solutions, and ways in which they can read chemical equations, rules when to use the definite article and the indefinite articles. The students will also demonstrate the rules pertaining to the order of adjectives in a sentence, the comparison of adjectives and superlative form of adjectives and adverbs. They will also illustrate how to write a CV, do the revision tests on their own in the e-class, take part in group work and put their group work in the e-portfolio. DEVELOPMENT OF GENERAL AND SPECIFIC COMPETENCIES OF THE

STUDENTS:

General competencies: pronunciation of basic chemistry elements and names of compounds, acids, molecules and reading of numbers, equations as well as naming the ionic compounds in English.

Specific competencies: describing the characteristics of a material by using adjectives, use of suffixes and prefixes, comparison of adjectives, adverbs and linking words.

STUDENT OBLIGATIONS: The students are obliged to attend classes and are to put their CV in their e-portfolio (Euro pass CV). They are obliged to practice solving the revision tests to prepare for the midterm tests. They become eligible to attend the midterm tests by attending class regularly. Students must have their indexes or ID cards in order to take part in written tests. If they are not eligible to attend the midterm tests then they have to take the final written and oral tests at the end of the second semester. The oral test refers to the lab experiment they did as a group which should be in their e-portfolio. They have to orally explain the lab report in order to get a final grade.

SIGNATURE REQUIREMENTS: The students must attend 80 percent of all classes and take part in the language exercises during class, write their CV (Euro pass CV) and put their group work and CV in the e-portfolio. They are to pass the revision tests in the e-class on their own. They have to pass all written and oral exams for the final grade.

TEACHING METHOD: lectures, individual work on the e-class and e-portfolio, language exercises such as reading, pronunciation, answering questions, pair work, group work, use of computer and consultations according to necessity.

METHOD OF ASSESSMENT:

Written midterm tests (60 percent or more on both midterm tests) and e-portfolio content Written final exam (minimum 60 percent to pass) and oral exam (presentation of lab experiment conducted at the University and filmed) which is linked to the filmed lab experiment group work in their e-portfolio.

QUALITY CONTROL AND SUCCESS OF COURSE: anonymous student survey METHOD PREREQUISITES:

Access to a computer and knowledge of e-class and e-portfolio passwords in the Moodle and Merlin programs.

COURSE LEARNING OUTCOMES:

- 1 students will generate basic concepts of chemistry terminology in English
- 2 students will explain new vocabulary and demonstrate pronunciation of it by learning it on
 - their own with the aid of on-line dictionaries

- 3 students will demonstrate how to use the e-portfolio at the beginners level
- 4 students will examine the additional materials in the e-class
- 5 students will prepare for the midterm tests by practicing the revision tests in the e-class

PROGRAM LEARNING OUTCOMES:

- 1 students will interpret the expert terminology used in the field of chemistry today
- 2 students will generate use of English grammar at the beginners level
- 3 students will write their own Euro pass CV in English and put it in their e-portfolio
- 4 students will use the e-class and e-portfolio programs on their own

English language II (advanced course)

COURSE AIM: To gain competencies for advanced reading, oral and written correspondence in the English professional language of the students trait. Independent learning of new vocabulary by using the on line dictionaries that also provide US and UK pronunciation. The students will know how to apply basic technical terminology and learn to negotiate in English. Preparing the students for oral presentations in English for future international conferences. Students will have mastered the basic technical terminology in English during this course. Students will also become familiar with some of the customs of the United States and the United Kingdom.

THE DEVELOPMENT OF GENERAL AND SPECIFIC COMPETENCIES OF STUDENTS:

General competencies: pronunciation of specific terminology that is related to various branches of technology in English.

Specific competencies: writing their own CV and seminar paper. Correct use of grammar.

STUDENT OBLIGATIONS: Students are required to attend lectures and are obliged to place their Euro pass CV in their e-portfolio. They are also expected to solve the revision tests in their e-class. They have to attend the midterm tests if they are eligible to do so, depending on their attendance record. They are obliged to bring their Index or ID card to class during midterm and final tests.

SIGNATURE ELIGABILITY: In order to get a signature at the end of each semester the student must be present in class for 80 percent of the lectures and take part in the exercises during class, write their CV and correct it, place their CV in their E-portfolio. The student must pass midterm exam 1.

MANNER OF TEACHING: lectures, language exercises (reading, pronunciation, understanding, speaking), independent learning (e-class), pair work, group work, individual answering questions related to the subject matter, grammar exercises and consultations if need be.

ASSESSMENT MANNER AND EXAMINATION:

Written tests (minimum of 60 percent or more scored on each midterm test excuses the student from having to take the final written and oral tests). They also have to have both seminar papers in the e-portfolio in order to get the final grade.

FORM 2

Written test (minimum of 60 percent in order to pass) and oral test (explanation of lab experiment)

Access to a computer and knowledge of password to access e-class and e-portfolio in the Moodlu or Merlin programs. Each student has to have their access code to enter these programs.

LEARNING OUTCOMES OF THE COURSE:

- 1 students will describe basic concepts of technology and summarize the terminology in English
- 2 students will individually learn and be able to repeat the pronunciation of new vocabulary
- 3 students will practice using the e-portfolio at an advanced level
- 4 students will individually examine the additional material in the e-class

5 students will individually prepare themselves for the midterm tests by reviewing the revision

tests in their e-class

LEARNING OUTCOMES AT PROGRAM LEVEL:

1 students will recognize expert terminology used in their field of technological expertise

2 students will demonstrate use of English grammar at the advanced level

3 students will demonstrate how to write a CV in English (Euro pass CV) and a lab report

4 students will practice the use of the e-portfolio and e-class programs on the computer

1) Course teacher: Ivica Gusić		
2) Name of the course: Numerical and Statistical Methods		
3) Study programme (undergraduate, graduate): Undergraduate		
4) Status of the course: Obligatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
 Apply principles from descriptive statistics in data analysis Outline basic principles from probability theory Outline and apply basic knowledge about continuous and discrete random variables. Apply principles and techniques of estimations and tests in making decision about population using sample. Apply procedures from programme package Excel. 	 Apply descriptive statistics to analyse results of measurements Apply probability theory to model problems in engineering Apply statistics to make decision in situations from engineering 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Elements of descriptive statistics	 distinguish between population and sample recognize and distinguish discrete and continuous statistical data group and present statistical data determine various data means and measures of dispersion 	 recognize in given situations the type of statistics data and sample - group given data, determine rang, frequencies and relative frequencies, arithmetic mean, mod, median, quartiles, variance and standard deviation
2. Notion of the probability, the conditional probability, the independence	 recognize elementary events and events - calculate probability in simple situations -recognize and apply conditional probability of an event 	 given an experiment, determine elementary events, describe events and calculate probability apply independence under a suitable circumstances.

	- recognize and apply	
	independence in successive	
	repetition of an experiment	
3. Notion of the random	-define random variable and	- determine the distribution of
variable (discrete and	its distribution	a given random variable
continuous). Expectation and	-distinguish between discrete	- given the density function,
variance	and continuous random	determine the function of
	variable	distribution, expectation and
	-interpret probability as the	variance
	area under the graph of	
	density function	
	-calculate probability,	
	expectation and variance	
	-interpret and sketch the	
	connection with descriptive	
L	define the binemial	rocogniza in concrete
4. Binomial and Poisson	distribution	situations the binomial
distribution	recognize the binomial	random variable determine
	distribution and apply it in	its range and distribution
	modelling engineering	-apply the Poisson
	nrohlems	distribution in suitable
	- define the Poisson	situations
	distribution	Situations
	- recognize the Poisson	
	distribution and apply it in	
	modelling engineering	
	problems	
5. Exponential and Normal	- define the exponential	-write down the density
distribution	distribution and recognize it	function and the distribution
	in concrete situations	function of the exponential
	-apply the exponential	variable, and present its
	distribution in modelling	graphs
	engineering problems	-calculate probability of a
	define the normal	concrete exponential
	distribution and recognize it	distribution
	in concrete situations	write down the density
	-apply the normal distribution	function of the normal
	in modelling engineering	distribution and present the
	problems	graph
	- interpret and apply the	-apply the normal distribution
	three-sigma rule	in given situations
6. Estimation of parameters.	- estimate the arithmetic	- given a sample, estimate the
Confidence interval.	mean and variance of a	arithmetic mean and
	population by arithmetic	variance of the population
	mean and variance of a	-given a sample, estimate

	sample	confidence intervals for
	- define confidence intervals	expectation and variance of
	for expectation and variance.	the population
	- determine confidence	
	intervals for expectation and	
	variance (by using an	
	appropriate statistical	
	package)	
7. Basic of hypotheses	- outline procedures for	-test a given hypothesis under
testing, t-test and F-test	testing hypothesis	various alternative hypothesis
_	- explain the notion of the	and various significance
	significance level	levels
	-apply t-test and F-test (by	
	using an appropriate	
	statistical package)	
8. Chi-square test	- describe Chi-square test	-sketch the procedure of Chi-
	- apply Chi-square test (by	square test for various
	using an appropriate	distributions
	statistical package)	
9. Least square method.	- sketch the problem of	-given a statistical data,
Correlation coefficient	adjustment of experimental	determine regression
	data to theoretical ones	coefficients (directly and by
	- describe and apply the least	using an appropriate
	square method for linear	statistical package)
	relationship	-given a statistical data,
	- calculate the correlation	determine and comment the
	coefficient	correlation coefficient
10. Notation of function	- sketch the problem of	- given the points, determine
interpolation, Lagrange and	interpolation of the function	the corresponding Lagrange
Newton interpolation	and its solution	polynomial (by using an
polynomial, cubic spline:	-explain and apply the	appropriate statistical
r y i y i y i y i y i y i y i y i y i y	Lagrange interpolation	package)
	polynomial	- given the points determine
	-explain and apply the cubic	the corresponding cubic
	spline	spline (by using an
		appropriate statistical
		package)
11. Approximate solution of	-sketch the problem of	-explain geometrically a
equations with one unknown	approximate solution of	given equation and its
- There are a mart and a mart and a mart a	equations	solutions
	- explain and apply the	-given an equation determine
	tangent method	approximate solution
	-explain and apply the	(directly and by using an
	iteration method	appropriate statistical
		nackage)
12 Approximate solution of	-sketch the problem of	-geometrically interpret a
12. Approximate solution of	sketen nie problem of	500metricany merpiet a

system of equations with	approximate solution of	given system of two
more unknowns	system of equations	equations
	-explain and apply the	- given a system of two
	Newton method	equations, apply the Newton
		method
13. Optimisation (option	-sketch the optimisation	- solve a given optimisation
content)	problem	problem
14. Approximate solution of	-graph the Cauchy problem	graph a given Cauchy
ordinary differential	y'=f(x,y), y(x0)=y0 and its	problem
equations	approximate solution	- given a Cauchy problem,
	-explain the Euler method	determine the solution by
	and the Runge-Kutta method	using the Euler method and
		the Runge-Kutta method

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. dr. sc. Veljko Filipan		
2) Name of the course: ENGINEERING THERMODYNAMICS		
3) Study programme (undergraduate,	graduate): undergraduate	
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. apply basic thermodynamics laws for thermodynamic calculations of processes	1. apply fundamental principles for identification and description of simple engineering problems	
with ideal and real working media2. apply graphical representation in defining and analysis of thermodynamic processes	2. define and solve simple engineering problems with relevant methodologies and available program packages	
3. use tables and diagrams with thermodynamic properties of some particular real working media applied in real processes	3. chose and apply appropriate mathematical/numerical methods for problem solving	
and devices4. define energy indicators of thermodynamic	4. apply basic information and communication technologies	
processes and devices working in heating and cooling modes	5. learning skills and competences required for further vocational training	

Teaching unit	Learning outcomes	Evaluation criteria
1. basic thermodynamic laws and thermodynamic quantities	 understand basic terms and definitions in engineering thermodynamics differentiate thermodynamic quantities such as enthalpy entropy, heat, energy and work connect the 1st and the 2nd law of thermodynamic differentiate thermodynamic processes according to the direction of the process 	 define basic thermodynamic state quantities and thermal quantities explain analytical expressions of thermodynamic laws calculate mechanical work due to volume changes and technical work define basic cyclic processes

2. processes with ideal working media	- define basic processes with ideal gasses; represent them in diagrams	- reproduce and explain the equation of state for ideal and real working media
	 define processes of compression and expansion; differentiate real and ideal ones calculate reversible and irreversible thermodynamic processes with ideal gas know achievable cyclic processes 	 sketch p,v T,s and h,s diagrams of basic processes with ideal gasses generate diagrams of achievable cyclic processes calculate thermodynamic properties and energy performance of particular cyclic processes
3. processes with real working media	 explain thermal properties and changes in real working media use charts and tables with properties of real working media in calculation of basic process 	 sketch and explain diagrams of basic thermodynamic processes with real working media use h,d diagram for defining real processes with wet air

1) Course teacher: Marica Ivanković; Jelena Macan		
2) Name of the course: Physical chemistry I		
3) Study programme (undergraduate, graduate): undergraduate, Chemical Engineering		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
 To define fundamental laws of physical chemistry related to gasses, thermodynamics and phase equilibria. To apply mathematics in derivation of the laws 	 To apply fundamentals of natural sciences which are necessary for identification and description of simple engineering problems To perform simple experiments with available laboratory equipments and devices To perform mathematical calculations 	
3. To prepare and perform laboratory experiments	4. To present research results related to their study subject (orally and in writing)	
 To analyze and interpret experimental results To write laboratory reports 		

Teaching unit	Learning outcomes	Evaluation criteria
1. Gases	 -To describe the gases laws and sketch them in p-V-T diagrams -To derive the ideal gas law using the thermodynamic and the kinetic-molecular approach -To derive the Van der Waals equation of state of real gases -To prepare and perform the laboratory experiment: <i>Determination of Molecular</i> <i>Mass by Victor-Meyer's</i> 	 To analyze and interpret p- V-T diagrams of ideal and real gases To calculate the properties of ideal and real gases To determine the molecular mass of an unknown easy volatile liquid To explain the mathematical derivation of the equations of state

	1	
	<i>Method</i> - To analyze and interpret experimental results and to write laboratory report	
2. Thermodynamics	 To describe 1st, 2nd and 3rd law of thermodynamics as well as Hess's law and Kirchhoff's Law to distinguish irreversible (spontaneous) and reversible processes to distinguish and define heat capacities at constant pressure or volume to distinguish and define state functions (internal energy, enthalpy, entropy , Gibbs energy) to derive the temperature and pressure dependence of Gibbs energy To prepare and perform the laboratory experiment: Calorimetry: Determination of the heat of reaction To analyze and interpret experimental results and to write laboratory report 	 -to explain the basic terms and principles of classical thermodynamics - to calculate the changes in state functions - to determine experimentally the heat of reaction - To explain the mathematical derivation of the dependence of Gibbs energy on pressure and temperature
3. phase equilibria	 To describe phase changes, define the phase equilibria; and sketch phase diagrams To derive Clapeyron's and Clausius Clapeyron's equation, Rauolt's law, Henry's law, Nernst's distribution law and Van't Hoff's law of osmotic pressure To prepare and perform the laboratory experiments: Cryoscopy, Boiling diagram, 	 To analyze and interpret phase diagrams to apply Clapeyron's and Clausius Clapeyron's equation to determine experimentally the freezing point depression to construct Boiling point diagram from obtained data

Nernst's distribution law	-To define equilibrium
-To analyze and interpret	conditions
experimental results and to	-To explain the mathematical
write laboratory report	derivations of Clapeyron's
	and Clausius Clapeyron's
	equation, Rauolt's law,
	Henry's law, Nernst's
	distribution law and Van't
	Hoff's law of osmotic
	pressure

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Bruno Zelić, PhD		
2) Name of the course: Mass and Energy Balances		
3) Study programme (undergraduate, graduate): Undergraduate		
4) Status of the course: Required		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
 outcomes): 1. to apply basic principles of mass and energy conservation on physical, chemical and biochemical processes 2. to define process space, system borders, and inlet and outlet process parameters 3. to differentiate steady-state and non steady-state, closed and open process 4. to develop mass and energy balances of ease studies 	 to apply and optimize chemical and related industrial processes to apply methodology of chemical engineering for process development to manage and schedule processes to manage and schedule time to apply mathematical methods, models and techniques for solving of case studies 	
5. to construct simple process schemes of chemical and related industrial processes		

Teaching unit	Learning outcomes	Evaluation criteria
1. Mass balance of physical processes	 to apply basic principle of mass conservation on physical processes to define process space, system borders, and inlet and outlet process parameters to develop mass balance of case studies to construct simple schemes of chemical and related industrial processes 	 construct process scheme for case study and identify inlet and outlet process streams and parameters determine the base for calculation apply the principle of mass conservation and develop mass balances for case study solve resulting system of independent linear equations
2. Mass balance of chemical	- to apply basic principle of	- construct process scheme

processes	mass conservation on chemical and biochemical processes	for case study and identify inlet and outlet process streams and parameters
	- to define process space, system borders, and inlet and	- determine the base for calculation
	outlet process parametersto develop mass balance of case studies	- apply the principle of mass conservation and develop mass balances for case study
	- to construct simple schemes of chemical and related industrial processes	- solve resulting system of independent linear equations
3. Mass balances of processes in multiple process units with and without recirculation	- to apply basic principle of mass conservation on physical, chemical and biochemical processes	- construct process scheme for case study and identify inlet and outlet process streams and parameters
	- to define process space, system borders, and inlet and outlet process parameters	- determine the base for calculation
	- to develop mass balance of case studies	- apply the principle of mass conservation and develop mass balances for case study
	- to construct simple schemes of chemical and related industrial processes	- solve resulting system of independent linear equations
4. Energy balance of physical processes	- to apply basic principles of mass and energy conservation on physical processes	- construct process scheme for case study and identify inlet and outlet process streams and parameters
	- to define process space, system borders, and inlet and outlet process parameters	- determine the base for calculation and standard conditions
	- to differentiate steady-state and non steady-state, closed and open process	- seek literature data needed for calculation of energy balances
	- to develop mass and energy balances of case studies	- apply the principle of mass and energy conservation and develop mass and energy
	- to construct simple process schemes of chemical and	balances for case study
	related industrial processes	- solve resulting system of independent linear equations

5. Energy balance of chemical processes	- to apply basic principles of mass and energy conservation on chemical processes	- construct process scheme for case study and identify inlet and outlet process streams and parameters
	- to define process space, system borders, and inlet and outlet process parameters	- determine the base for calculation and standard conditions
	- to differentiate steady-state and non steady-state, closed and open process	- seek literature data needed for calculation of energy balances
	 to develop mass and energy balances of case studies to construct simple process schemes of chemical and 	- apply the principle of mass and energy conservation and develop mass and energy balances for case study
	related industrial processes	- solve resulting system of independent linear equations

٦

1) Course teacher: Asoc. Prof. Jasna Prlić Kardum PhD		
2) Name of the course: Transport phenomena		
3) Study programme (undergraduate, graduate): Undergraduate, Chemical Engineering		
4) Status of the course: Required		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
 Outcomes): 1. Understand the principles and lows of transport phenomena (momentum, heat and mass transfers) 2. Understand the principles of transport phenomena applied to fluid motions 3. Understand and apply the basic equations at macroscopic level depending on mechanism of momentum, heat and mass transfers 4. The ability to use the methodology of dimension analysis 5. Apply analogy between momentum, heat and mass transfer to define transport 	 The ability to apply chemical engineering methodology. The ability to apply fundamental engineering knowledge to interpret experimental results. The ability to choose and apply mathematical and numerical methods for solving transport phenomena problems The ability to use experimental results to gather information for engineering designs. The ability to understand the impact of engineering solutions on the surrounding context. 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Introduction and basics concepts of transport phenomena	-Define terms for understanding and describing the process of momentum, energy and mass	 -Define fluid concepts, continuum hypothesis and nature of fluid flows -Explain the mechanisms of fluid transport -Define the basic equations which explain transport phenomena -Describe driving and drag

		forces and transport coefficients
		-Identify Newton and non- Newton's fluids and rheological equations which describe their behavior
2. Momentum transport	 Express conservation lows for fluid in motions Recognize laminar and turbulent fluid flow Clarify boundary layer theory Apply dimensional analysis for defining pressure loss in fluids Use Moody diagram Define different cases of momentum transport and apply specific equations 	 -Describe conservation lows and apply them to calculate the pump power -Compare laminar and turbulent flow -Analyze hydrodynamic boundary layer structure -Draft velocity distributions in tube for laminar and turbulent flow -Calculate fluid velocity -Define ratio between average and maximal velocity -Derive Darcy Weisbach equation -Define friction factor by using Moody diagram -Estimate drag force of flow around body, in a mixing tank or through packed bed -Define dimensionless numbers
3. Heat transport	 Define and recognize mechanisms of heat transfer Apply equations for stationary and non stationary 	-Distinguish and explain difference between conduction, convection and radiation
	conduction heat transfer -Express analytical solutions for cooling/heating in finitely and semi-infinitely bodies -Define influence of hydrodynamic conditions on	 -Analysis of conduction heat transfer trough bodies of different geometry -Determine area of heat transfer and driving force for heat transfer

	convection heat transfer -Review different methods for obtaining convective heat transfer coefficient -Describe heat transfer for different geometries -Describe nature and basic lows for radiation -Discuss heat transfer during phase changes	 -Define influence of hydrodynamic conditions on heat transfer coefficient - -Define mining of different dimensionless number and correlation equations -Analyze lows to explain radiation -Calculate overall heat transfer coefficient in phase- change systems
4. Mass transport	 -Define basic concepts in mass transport -Distinguish steady mass transfer cases -Define diffusion boundary layer and convective mass transfer coefficient 	 -Distinguish and explain difference between diffusion and convection -Distinguish Fick and Stephan low -Explain mass transport and individual and overall mass transfer coefficients in two phase systems
5. Analogies between heat, mass and momentum, transfer	-Describe the principles of analogy	 -List and explain differences between analogies -Apply analogies to calculate mass or heat transfer coefficients

1) Course teacher: prof. dr. sc. Marko Rogošić		
2) Name of the course: Chemical Engineering Thermodynamics		
3) Study programme (undergraduate): Chemical Engineering		
4) Status of the course: Mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
1. students shall describe the concepts of chemical engineering thermodynamics as logical extensions of fundamental physical-	1. students shall recognize the role and importance of thermodynamics within the framework of chemical engineering profession	
 2. students shall recognize and select necessary literature thermodynamic data as well as theoretical relations for the description of different thermodynamic functions vs. temperature and pressure relationships for real gases, real solutions and mixtures 3. students shall interpret and apply (at the basic level) different forms of phase diagrams, tables and numerical expressions for the description of thermodynamic 	 2. students shall apply (at basic level) the knowledge of thermodynamics for solving chemical engineering problems 3. students shall employ the engineering methodology of graphical presentation of a problem as well as of a problem solution 4. students shall apply computers for solving engineering problems 	
 functions of real gases and solutions 4. students shall create the system of equations necessary for the description of vapour-liquid and liquid-liquid equilibria problems; based on that they shall solve simple systems of equations 5. students shall reproduce basic principles of irreversible thermodynamics, identify thermodynamic potentials and thermodynamic flows and recognize the importance of their interactions; students shall interpret the term "stationary state" 		

University of Zagreb Faculty of Chemical Engineering and Technology

Teaching unit	Learning outcomes	Evaluation criteria
1. Thermodynamic properties of real gases and solutions	 students shall apply (at basic level) the equations of state for solving <i>pvT</i> behaviour problems of real gaseous mixtures students shall reproduce the principles of calculation of enthalpy and entropy using equations of state students shall interpret the terms of partial molar functions, mixing functions, excess functions, activities as well as activity coefficients students shall recall the principles of constructing modern activity coefficient models as well as their application 	 students answer the questions regarding the theoretical fundamentals of disclosed concepts students solve nonlinear equations of state expressing any of the <i>pvT</i> unknowns students use diagrams to present solutions of the equation of states and they recognise their physical significance students use diagrams to present their own as well as literature experimental data on the thermodynamic properties of real solutions students employ graphical and/or numerical methods to determine the characteristic thermodynamic functions of real solutions
2. Phase equilibrium	 students shall create the system of equations necessary for the description of vapour-liquid, liquid- liquid and solid-liquid equilibria problems students shall solve simple problems related to vapour- liquid, liquid-liquid and solid-liquid equilibria problems 	 students answer the questions regarding the theoretical fundamentals of disclosed concepts students solve simple problems related to vapour- liquid, liquid-liquid and solid-liquid equilibria problems students independently solve medium-level problems related to vapour-liquid and liquid-liquid equilibria, they create graphical presentation of the solution and they analyse the results students working in teams determine the experimental

FORM 2	RM 2
--------	------

		parameters of vapour-liquid and liquid-liquid phase equilibria, they model the phase equilibria and then independently report and discuss the results
3. Chemical equilibrium / Thermodynamics of irreversible processes	 students shall recognize the basic principles of solving chemical equilibrium problems in real systems students shall reproduce basic principles of irreversible thermodynamics, identify thermodynamic potentials and thermodynamic flows and recognize the importance of their interactions students shall interpret the term "stationary state" 	- students answer the questions regarding the theoretical fundamentals of disclosed concepts

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Krešimir Košutić (Full Professor)		
2) Name of the course: Physical Chemistry II		
3) Study programme (undergraduate, graduate): The undergraduate study of Chemical Engineering		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
 outcomes): 1. Knowledge of the fundamental laws of physical chemistry, chemical equilibrium, surface phenomena (surface tension and adsorption), electrochemical equilibrium and chemical kinetics 2. Capacity to apply knowledge of mathematics and derive equation (which clearly describe the physical phenomenon under consideration) 3. Ability to prepare and make laboratory experiments 4. Analyze and interpret the results of experiments 5. Prepare laboratory reports 	 the ability to apply fundamentals of natural sciences which are necessary for identification and description of simple engineering problems, organizational and planning abilities necessary to perform simple experiments with available laboratory equipment and devices, the ability to apply scientific methods in process analysis and modelling and in product design, the ability to work both independently and in multidisciplinary teams, the ability to understand social importance and role of engineering and the importance of the highest ethical standards in professional work the ability to chose and apply appropriate mathematical/numerical methods for problem solving 	

Teaching unit	Learning outcomes	Evaluation criteria
12. Chemical equilibrium	 Describe the chemical equilibrium in the conditions of constant pressure and temperature using the Gibbs energy, derive thermodynamic equilibrium constant Describe the response of 	-Compute equilibrium constant in the examples of homogeneous and heterogeneous equilibrium - Analyze and interpret the Haber Bosch synthesis of ammonia, optimize process parameters of pressure and

	equilibria to temperature and pressure - Derive van't Hoff reaction isobars - Describe the homogeneous and heterogeneous chemical equilibria	temperature
34. Surface phenomena: surface tension and adsorption	Describe the phenomena at the interface: solid-gas, solid- liquid and liquid-gas - Define the surface tension and derivem Gibbs adsorption isotherm - Describe and distinguish the surface-active and non-active substances - describe surface films - Define the phenomenon of adsorption and factors affecting the adsorption and adsorption equilibrium, identify the types of adsorption isotherms - Derive Langmuir isotherm - Prepare and make a 2 laboratory experiments: adsorption and surface tension - Calculate and interpret measurement data and write the Freundlich adsorption isotherm and write a lab	 -Explain importance of surfactants and their application in practice - Recognize the importance of experimental conditions determining the adsorption isotherm, - Freundlich isotherm parameters interpret - Demonstrate skill computation and application Frundlichove, Langmurove and B.E.T. isotherms
59. Electrochemistry: the conductivities of electrolyte solution, equilibrium electrochemistry	 Describe conductivity of electrolytes and distinguish strong from weak electrolyte, define 1st and 2nd Kohlraush' law Derive an Ostwald's law Define the concept of activity Explain the Debye-Hückel theory of strong electrolytes Describe the equilibrium of electrode-solution 	 An experimental determine the conductivity of strong and weak electrolytes An experimental determine electrode potential, electromotive force (EMF) and Hittorf's number Demonstrate skill calculating molar conductivity, degree of dissociation, activity coefficients, electrode

	-Derive the thermodynamic expression for the electrode potential -Define the electromotive force Nernst equation Prepare and make a laboratory experiments of electrolyte conductivity, EMF and Hittorf's number, - Calculate measurement data and interpret the results of the experiment, and write a lab reports	potentials - Explain the relationship between EMS and the Gibbs energy and utility measurements EMS - Recognize the importance of cell production as the most efficient energy converters
10. Diffusion	 -Define the concept of diffusion - Derive the first and second Fick's law - Define and describe the diffusion coefficient determination method 	- Recognize and understand the significance of diffusion as a physical phenomenon that precedes chemical kinetics
11-15. The chemical kinetics	Define the rates of a chemical reaction, and the factors that affect the rate of chemical reactions - Define the reaction order - Describe the methods for determining the reaction rate constants and reaction order - List reactions to the kinetic mechanism of the elementary and complex - describe the kinetics of reverse,parallel, and consecutive reactions - describe the temperature dependence of reaction rate (Arrhenius equation) - Describe the theory of transition state (activated complex) - Define the basic concepts of catalytic reaction Prepare and make a laboratory experiments:	Explain the importance of chemical kinetics, the rate of chemical reactions and impact to the rate of the reaction using catalysts, inhibitors and retardants - Experimentally determine rate constants, reaction order and interpret the influence of temperature on the rate constant - Demonstrate skill computing Understand and interpret the rate-determining step reactions

Inversion of saharose - Calculate measurement data and interpret the results of the experiment, and write a lab reports	

1) Course teacher: Assoc. Prof. Jasna Prlić Kardum, PhD

Assoc. Prof. Gordana Matijašić, PhD

2) Name of the course: Fluid Mechanics

3) Study programme (undergraduate, graduate): Undergraduate, Chemical Engineering

4) Status of the course: Required 6) Learning outcomes at the level of 5) Expected learning outcomes at the level of the course (4-10 learning the study programme: outcomes): 1. The ability to apply chemical engineering methodology. 1. The ability to identify and describe rheological behavior of fluids. 2. The ability to apply basics of fundamental engineering knowledge. 2. Apply fundamental knowledge of fluid statics and dynamics for compressible and 3. To analyze complex chemical engineering incompressible fluids. problems. 3. The ability to choose and apply adequate 4. The ability to apply methodology of equipment for fluid transport. theoretical interpretation of experimental results. 4. Apply fundamental principles of fluid mechanics to solve problem s in two-phase flow regime.

Teaching unit	Learning outcomes	Evaluation criteria
1. Rheological behavior of fluids	 Define the basic terms of fluid mechanics Identify rheological behavior of fluid 	 Define fluid concepts, continuum hypothesis and properties of fluid Name the forces in fluids Sketch rheological diagrams Identify rheological equations depending on rheological behavior
2. Fluid statics	- Define the basic terms of fluid statics	 Describe hydrostatic pressure List and describe the mode

	- Describe Euler equation	of hydrostatic manometers
	- Understand the manometer principle of operations	- Calculate a liquid level in a tank
3. Dynamics of incompressible fluids	- Understand the principles of continuity momentum and energy as applied to fluid motions	- Recognize and describe these principles written in form of mathematical equations
	- Describe flow equations	- Calculate velocity distribution of Couette flow
	newtonian fluids	- Define meaning of Navier- Stocks equation
		- Apply Navier-Stocks equation to analyze problems
		- Define flow, velocity distribution and pressure drop for non-newtonian fluid flow
4. Fluid transport	- Define fluid motions	- Define cavitation conditions
	through narrow orificesList and classify types of pumps	- Derive equation and calculate the required time for tank discharge
	- Compute the branched pipeline	- Outline characteristics of pumps
		- Explain selection criteria and pump design
		- Calculate the pressure drop and the pump power for fluid transport through the branched pipeline
5. Dynamics of compressible flow	- Describe characteristics of compressible fluids	- Apply conservation laws for compressible fluids
	- Explain isothermal flow of ideal gas in horizontal pipe	- Evaluate head loss for the isothermal fluid flow
6. Dynamics of heterogeneous system	- Analyze characteristics of two-phase flow	- Predict and describe flow regimes in gas-liquid system
	- Categorize homogenous and heterogeneous systems	- Evaluate pressure drop for two-phase flow
		- Describe hydraulic transport

	of heterogeneous systems
	- Define factors affecting rheological behavior
	- Explain pneumatic transport

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Felicita Briški, PhD.		
2) Name of the course: Environmental Protection		
3) Study programme - undergraduate: Chemical Engineering		
4) Status of the course: mandatory		
6) Learning outcomes at the level of the study programme:		
 to identify the problems in the environment (water, soil, air) and apply theoretical knowledge to solve problems to apply methodology of chemical engineering and environmental engineering in solving problems in the environment and in industry to choose simple processes and process equipment for treatment the pollutants in waste streams to assess how designed process affects on the global environment to analyze the impact of new technologies, environmental concerns and public opinion on the legislation 		

Teaching unit	Learning outcomes	Evaluation criteria
1. Ecosystems, flow of substances in the environment, population and demographic changes	 to describe the flow of matter and energy in the biomes to explain the transport and transformation of substances in the environment to analyze the rate of 	 illustrate the flow of matter and energy in the biomes and state the energy efficiency describe and sketch the cycles of substances in the environment solve the growth rate and

	growth of the human population in different parts of the world	the doubling time of the human population applying differential equation
2. Classification of water, pollution of water sources, waste water and waste water treatment	 to distinguish the characteristics of rivers, lakes and oceans to select and apply appropriate process to remove contaminants from groundwater to analyze the chemical composition of the waste water to select and apply appropriate process and process equipment for waste water treatment 	 explain the importance of the thermocline and label it on the diagram of vertical profile of the water column describe mechanisms of filtration and adsorption, and write mathematical expressions that describe the adsorption isotherm explain the composition of waste water and purpose of waste water treatment, and point out the consequences of discharge of untreated water in the receivers outline the process of wastewater treatment and set up the mass balance
3. The soil as a natural phenomenon, the use of soil and soil pollution, solid waste management	 to describe the formation of soil and identify types of soils to analyze the impact of over-use of pesticides to explain and differentiate the procedures for solid waste management 	 explain factors which influence the formation of soil summarize the mechanisms of distribution of pesticides in the environment, and procedure of their removal from the environment select the appropriate disposal procedure for a given type of solid waste
4. The atmosphere and the movement of air masses, the sources of air pollution and the removal of harmful gases	 to describe the layers of the atmosphere and explain the movement of air masses to identify the sources of pollution in the atmosphere, and specify process equipment for treatment of flue gas 	 indicate the chemical composition of the atmosphere, and sketch the layers of atmosphere explain the difference between stationary and mobile sources of pollution, and select the procedures to prevent emissions
5. Noise, light pollution, thermal pollution and	- to indicate the sources and methods for noise	- calculate the overall noise level for a given group of

radioactive contamination	measurement, and explain the	machines, and select
	implementation of noise	equipment for noise
	protection	reduction
	- to identify sources of light	- describe the impact of light
	pollution and choose the	pollution on the environment,
	proper illumination	and define the type of
	- to analyze the sources of	illumination for a given space
	pollution of thermal power	- describe the impact of
	plants, and select the	untreated pollutants from
	treatment processes for	power plants on the
	removal of pollution	environment, and apply
	- to describe the application	proper process for removal of
	of radioactive substances, and	thermal pollution
	differentiate types of	- list the sources of radio-
	radioactive waste	active radiation, sketch and
	- to explain the methods of	describe the types of
	disposal of radioactive waste	radiation and their impact on
		environment
		- select a disposal procedure
		for a given radioactive waste

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Associate Prof. Dragana Mutavdžić Pavlović				
2) Name of the course: Process and instrumental analysis				
3) Study programme (undergraduate, graduate): undergraduate, 2 nd year				
4) Status of the course: required				
 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): Before this course, it is expected a systematized fundamental knowledge of courses Physics, General and Inorganic Chemistry, Analytical Chemistry, Organic Chemistry and Physical Chemistry. 1. Properly interpreted adopted theoretical knowledge related to instrumental methods of analysis and principles of instruments and the procedural knowledge and practical skills related to performance of measurement. 2. Explain the connection between the fundamental knowledge with their application in instrumental and process analysis. 3. Compare, interpret and explain the results obtained from the analytical process. 4. Integrate acquired knowledge and apply them in solving the problem as well as in the making decision in analytical practice and in process analysis. 5. Evaluate, compare, select, recommend and 	 6) Learning outcomes at the level of the study programme: 1. The ability to apply basic knowledge of the natural sciences in identifying and describing the engineering problems. 2. The ability to organize and plan experiments using the laboratory equipment and devices. 3. The ability of individual work and ability to work in teams. 4. Skill presentation of research results related to the content of the study (in writing and orally). 			
conclude what is the best analytical method for a given real problem.				

Teaching unit	Learning outcomes	Evaluation criteria
1. Introduction: Fundamentals	- list the calibration procedures and	- apply previously acquired
of process analytics. Basic	define the differences between them	knowledge to select the
principles of instrumental	and the difference in their application,	calibration procedure,

analysis. Signal processing in the analysis. Validation. Calibration procedures (standard addition method, the method of external standard, internal standard method).	 argue the need for calibration procedures, describe the signal to noise ratio, 	depending on the given topics and applied instrumental technique
2. Instrumental analytical methods	 apply the theoretical knowledge in relation to the methods of instrumental analysis (spectrometry, thermal and electroanalytical analysis, instrumental methods of separation) and the principles of instruments operation and procedural knowledge and skills related to practical performance of measurement, distinguish the techniques of instrumental analysis, identify and distinguish the relative methods from absolute method, connect basic with new knowledge gained in the course of instrumental methods, identify the advantages and limitations of various methods 	 define which of instrumental methods used depending on the type of sample and the proportion of the analyte, classify the spectrometric and electroanalytical methods; the differences between the individual methods within the same group, distinguish signals excitation and response depending on the methods of instrumental analysis, apply the skills of computation depending on instrumental methods
3. Automation in instrumental analysis. Process analysis and process analyzers.	- connect adopted and the theoretical knowledge of instrumental analysis methods and principles of instruments with the basic settings of process analysis,	- connect the acquired theoretical knowledge of instrumental techniques with their application in process analysis,
4. Laboratory exercises	 use laboratory equipment (alone or in a small group) according to the curriculum of exercises, operate/use with appropriate programs related to the work at the instruments, apply the basics of statistical analysis of numerical data and their graphical presentation, systematically and independently record and document the appropriate measurement size and produce a report after completion of the analysis 	 practical work on the instruments, independent processing of the measurement results and graphical representation of results, writing the experimental data and making the laboratory reports

English language I (basic course)

COURSE AIM: The acquisition of competencies such as reading, oral and written fluency in English, illustrating usage of expert engineering terminology. Generating new vocabulary by using on line dictionaries on their own to recall pronunciation and meaning. Preparation of presentations for purposes of practicing oral interpretation for future international conferences. Students are also introduced to some customs regarding the cultures of the United States and the United Kingdom.

DEVELOPMENT OF GENERAL AND SPECIFIC COMPETENCIES OF STUDENTS: General competencies: pronunciation of expert terminology that refers to various types of engineering and technology in English.

Specific competencies: writing a CV and illustrating usage of English grammar. Orally presenting a lab report which was previously filmed and placed in their e-portfolio.

STUDENT OBLIGATIONS: students are obliged to attend classes and solve all the revision tests in their e-class. They are also obliged to enter new vocabulary in the glossary of their e-class individually. They must have their indeks or ID card when writing midterm tests or final written tests.

SIGNATURE CONDITIONS: 80 percent attendance in each semester and taking part in class by engaging in class work. They must have a Euro pass CV and filmed lab experiment in their e-portfolio.

They must have a positive grade on their midterm test 1.

LECTURES METHOD: Lectures, language exercises in class such as reading,

comprehension, pair work, group work, individual group work that is to be placed in their eportfolios, revision of grammar by individually solving the revision tests in the e-class, consultations if need be every week.

MANNER OF ASSESSMENT AND TESTING:

Written midterm tests (60 percent or more on both midterm tests excludes the need for final written and oral exam)

Final written test (60 percent or more for passing grade) and oral exam (oral presentation of lab experiment in their e-portfolio)

QUALITY CONTRUL AND SUCCESS OF COURSE: Anonymous student survey METHOD PREREQUISITES:

Access to a computer and knowledge of e-class password and e-portfolio password in Moodle and Merlin programs.

i) COURSE LEARNING OUTCOMES:

1 students will generate basic concepts of engineering terminology in English

2 students will demonstrate individual discovering of pronunciation of new vocabulary and the

definition of the newly acquired expert terms

3 students will demonstrate ability to use the e-portfolio for recording personal improvement

4 students will demonstrate recalling grammar by solving the revision tests in their eclass

j) PROGRAM LEARNING OUTCOMES:

1 students will recall expert terminology used in the various fields of engineering

2 students will generate an advanced usage of grammar in the English language

3 students will recall how to write a CV, cover letter and reply to an job ad in the paper

4 students will use the Merlin and Moodle computer programs to do individual or group

work

in their e-class and e-portfolio.

English language II (advanced course)

COURSE AIM: Acquiring competencies such as reading, oral and written fluency in English in the field of technology. Individual analysis of new vocabulary by using the on line dictionaries to discover the pronunciation and definition. Individual examination of revision tests in the e-class. Preparation for making oral presentations in English. Students also learn about the customs and cultures of the United States and the United Kingdom.

DEVELOPEMENT OF GENERAL AND SPECIFIC COMPETENCIES OF STUDENTS: General competencies: pronunciation of expert terminology related to the field of technology in English. Understanding of expert terminology and usage both in written and oral form.

Specific competencies: oral presentation of lab report and entering new vocabulary in the glossary of the e-class. Recalling grammar by revision of tests in the e-class. Practising usage and pronunciation of new vocabulary.

STUDENT OBLIGATIONS AND MANNER OF FULFILMENT: Students are expected to attend at least 80 percent of all classes and are obliged to put their CV and group presentation in their e-portfolio. They are also expected to solve all revision tests in the e-class individually. They have to bring their indeks or ID cards during midterm and final tests. SIGNATURE CONDITIONS: In order to get a signature at the end of each semester they must attend at least 80 percent of all classes and take part in language exercises, orally present their group work of the lab experiment conducted at the University and placed in their e-portfolio.

They must pass midterm tests 1 and 2.

LECTURE METHOD: Lectures and language exercises such as reading out loud, comprehension, pair work, group work and consultations when necessary.

ASSESSMENT METHOD AND EXAMINATION:

Written midterm tests (60 percent or more on both midterm tests excuses the student from having to take the final written and oral tests)

Final written test (at least 60 percent required to pass) and oral exam (presentation of lab experiment filmed as part of group work and put in their e-portfolio)

QUALITY CONTROL AND SUCCESS OF COURSE: Anonymous student survey METHOD PREREQUISITES:

Access to a computer and demonstration of using the e-portfolio and e-class programs via passwords in the Merlin and Moodle programs intended for students of Zagreb University.

COURSE LEARNING OUTCOMES:

- 1 students will be able to use the basic terminology in the field of technology in English.
- 2 students will explain new vocabulary and arrange it in the e-class glossary individually
- 3 students will use the e-portfolio to record personal development
- 4 students will examine the revision tests in the e-class and recognise the grammar and be able
 - to use it in both written and oral communication

PROGRAM LEARNING OUTCOMES:

1 students will understand expert terminology used in the contemporary fields of technology

- 2 students will review and use English grammar at an advanced level
- 3 students will conclude how to present a lab report both orally and in writing
- 4 students will demonstrate usage of the e-class and e-portfolio in the Merlin and Moodle

programs intended for students of Zagreb University

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Dr. Marijana Hranjec, associate professor				
2) Name of the course: Organic Chemistry				
3) Study programme (undergraduate, graduate): Undergraduate				
4) Status of the course: Basic				
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:			
 outcomes): 1. Analyzing and drawing the correct structure of compounds with carbon, bonding in organic molecules and structures of molecules in space 2. Using the stereochemistry knowledge in analyzing mechanisms in organic chemistry 3. Define and identify the main types of organic reactions and explain the basic reaction mechanisms with the recognition of reactive intermediates in the reaction 4. Identify the functional groups in the molecules, to define the class of compounds and to apply the IUPAC rules for naming of organic compounds 5. Carry out the standard preparative procedures used for the preparation of simple organic compounds 6. Propose and devise the most likely reaction method for new molecules that are not given as examples in class 	 To apply fundamentals of natural sciences which are necessary for identification and description of simple engineering problems. To adopt organizational and planning abilities necessary to perform simple experiments with available laboratory equipment and devices. To work both independently and in multidisciplinary teams To identify, define and solve simple engineering problems with relevant methodologies and available program packages. To adopt learning skills and competences required for further vocational training. 			

Teaching unit	Learning outcomes	Evaluation criteria
1. Carbon compounds and	- to identify class of	- to know to classify the
chemical bonds, classes of	compounds, chemical	default compounds according
compounds, a division of	bonding and hybridization	to the groups of organic
reactions in organic	- draw the correct structural	compounds
chemistry. Alkanes and	representations of alkanes	- be able to determine the
cycloalkanes. Conformational	and cycloalkanes, alkenes,	most stable conformations of

and geometric isomerism.	dienes, polyenes, alkynes	alkanes and cycloalkanes
Alkenes, dienes, polyenes,	- to use knowledge of	- apply knowledge of the
alkynes: addition reaction.	conformational and	stability of carbocations in
	geometric isomery to define	addition reactions to the
	the stereochemistry of	double bond of an alkene and
	molecules	diene
	- write acceptable	
	mechanisms for reactions of	
	alkanes, alkenes, alkynes	
	-to propose the most stable	
	conformers of alkanes	
	Newman projections	
	- compare the stability of a	
	variety of substituted	
	cyclohexane rings	
	- to use the $(R) / (S)$ system	- apply the rules of the
	for determining the absolute	absolute configuration
	configuration of carbon	determination to the new
	achiral	compounds with achiral
	- properly draw of	carbon atom
	enantiomeric displays of	- for a given
	asymmetric organic	monosubstituted aromatic
2. Stereochemistry: optical	molecules	compound determine in
isomerism, constitutional	- to use the knowledge of	which direction is directed
isomers and stereoisomers,	stereochemistry to distinguish	entering of another
enantiomers and chiral	various types of	substituent depending of the
molecules, $(R) / (S)$ system,	stereoisomers	nature of substituted groups
the diastereomers. Aromatic	- to write acceptable	- determine the direction and
compounds. Alkyl halides.	mechanisms of electrophilic	the reaction mechanism of
Alcohols, phenols, aryl	aromatic substitution reaction	the default alkyl halide
halides, ethers, thiols.	- to compare the reactivity of	depending on the structure of
	alkyl halides in nucleophilic	the substrate and the strength
	substitution reactions and	of the nucleophile
	elimination reactions	Ĩ
	- to discuss about the	
	difference in reactivity of	
	alcohols, phenols and related	
	compounds	
	- to use of the organic	- judgment about the reaction
3. Aldehydes and ketones;	chemistry dictionary for the	pathway of electrophilic
nucleophilic addition to the	carbonyl compounds.	additions on default
carbonyl group. Carboxylic	heterocycles and nitrogen	heterocyclic compound
acid and derivatives. Amines	compounds	- to conclude about the
and related compounds with	- draw the correct spatial	possibility of mutual
nitrogen. Heterocyclic	structures of organic	translation of carboxylic acid
compounds.	molecules containing a	derivatives

	carbonyl or amino group	- to recommend preparation
	- to write acceptable	of a variety of substituted
	transformations in	aromatic compounds via a
	nucleophilic addition	diazonium salt of the
	reactions to the carbonyl	corresponding amine
	group of aldehydes, ketones,	- determine the alkalinity of
	carboxylic acids and	certain heterocyclic nuclei
	derivatives	depending on their
	- to compare the reactivity of	heteroatom
	the amine depending on the	
	structure	
	- suggest the most likely	
	reaction method in the	
	reactions of electrophilic	
	additions on various	
	heterocyclic nuclei	
	- to use the knowledge about	- based on the acquired
	the types of polymerization to	knowledge to suggest ways
	obtain concrete examples of	of modification structure of
	synthetic polymers	synthetic polymers in order to
	- to know the basic structural	improve properties
	features of essential amino	- apply and connect the
~ ~ 1	acids, proteins and nucleic	knowledge about the
4. Synthetic polymers.	acids	structure of essential amino
Amino acids, proteins and	- to become familiar with and	acids with the structure of a
nucleic acids. Carbohydrates.	recognize the structure of the	protein
Determination of the	most important carbohydrates	- to know the structure of
structure of organic	- to become familiar with and	nucleic acids
compounds by spectroscopic	discuss the most important	- to know the structure of the
methods.	methods for determining the	hasic and most important
	structure of organic	carbohydrates
	compounds	- to conclude and compare
	- to compare the most	the application of specific
	important methods for	methods for determining the
	determining the structure of	structure of organic
	organia compounds	compounds
	organic compounds	compounds

1) Course teacher: Assoc. Prof. Gordana Matijašić, PhD		
2) Name of the course: Mechanical Process Engineering		
3) Study programme (undergraduate, graduate): Chemical Engineering, Undergraduate		
4) Status of the course: Required		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
 Define properties of coarse disperse phase, methods of measurement, graphical interpretation and approximation of particle size distribution. To analyze mechanical separation 	1. The ability to apply scientific methods in process analysis and modelling and in product design.	
	2. Organizational and planning abilities necessary to perform simple experiments with available laboratory equipment and	
processes.	devices.	
3. To analyze mixing of homogenous and heterogeneous systems.	3. The ability to understand basic methods of characterization.	
4. To analyze energy and kinetic aspects of the grinding process.	4. To analyze complex chemical engineering problems.	
5. To conduct experiments in laboratory scale in order to estimate the parameters required for the process design.	5. The ability to practice chemical engineering methodology in product development.	
	6. The ability to apply the methodology of the theoretical interpretation of experimental results.	
	7. The ability to work both independently and in multidisciplinary teams.	

Teaching unit	Learning outcomes	Evaluation criteria
1. Characterization of coarse disperse phase.	 analyze the properties of coarse disperse phase recognize the methods of characterization of coarse disperse phase 	 distinguish disperse system, disperse phase and disperse medium define dispersity state and mixedness

	- define the mode of	- explain particle shape
	graphical interpretation and approximation of particle size distribution	- illustrate the meaning of equivalent diameters
		- sketch the graphical representation of particle size distribution
		- explain the meaning of parameters of distribution functions through real example
		- apply theoretical knowledge in practical measurement
2. Mechanical separation and sedimentation	- define separation efficiency - describe sedimentation	- distinguish total and grade efficiency
	 identify inlet and outlet variables recognize and distinguish separation equipment 	- sketch grade efficiency curve
		- explain separation efficiency through characteristic values
		- explain basics of gravitational and centrifugal sedimentation
		- solve the examples to estimate parameters for sedimentation basin design
		- apply theoretical knowledge in practical measurement
		- name the types of gravitational and centrifugal sedimentation equipment
		- illustrate inlet/outlet streams using equipment scheme
		- recognize the principle of sedimentation device mode
		- point out separation device advantages and disadvantages
		- identify values essential for selection of sedimentation

		equipment
3. Filtration	 describe filtration identify inlet and outlet variables recognize and distinguish separation equipment 	 explain the basics of cake filtration and centrifugal filtration solve the examples to estimate parameters for filter design and scale-up
		- apply theoretical knowledge about cake filtration in practical measurement
		- categorize the filtration equipment
		- recognize the principle of filtration device mode
		- illustrate inlet/outlet streams using equipment scheme
		- point out separation device advantages and disadvantages
		- identify values essential for selection of filtration equipment
4. Mixing of fluids, suspensions and powders	- define degree of mixing in homogenous and heterogeneous systems	- distinguish hydrodynamic regime in liquid-liquid and solid-liquid mixing
	- define primary variables that determine the mixing conditions	- explain possible suspension states and suspending regimes
	- analyze dynamic process response	- recall the scale-up rules in mixing of homogenous and heterogeneous systems
		- solve examples of mixing system design
		- apply theoretical knowledge in practical measurement
		- define powder types, mixture types and mixture quality

		- explain particle segregation and mechanisms of segregation
5. Comminution and agglomeration	 analyze energy and kinetic aspects of the grinding process recognize and distinguish equipment for particle size reduction and enlargement describe the modes of equipment selection 	 interpret basics of fracture mechanisms explain models for estimation of energy consumption in comminution describe kinetics of particle size reduction apply theoretical knowledge in practical measurement name the types of equipment illustrate inlet/outlet streams using equipment scheme recognize the principle of grinding device mode point out separation device advantages and disadvantages identify values essential for selection of filtration equipment

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Vesna Tomašić			
2) Name of the course: Catalysis and catalysts			
3) Study programme (undergraduate, graduate): Chemical Engineering (undergraduate)			
4) Status of the course: mandatory			
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:		
1. distinguish catalytic properties (activity, selectivity, stability), compare homogeneous vs. heterogeneous catalysis	1. the ability to apply fundamentals of natural sciences which are necessary for identification and description of simple		
2. compare the kinetics and mechanism of homogenous and heterogeneous-catalytic reactions	engineering problems,2. the ability to work both independently and in multidisciplinary teams,3. the ability to identify, define and solve		
3. determine the difference between physical adsorption and chemisorption	simple engineering problems with relevant methodologies and available program packages,		
4. classify the catalyst with respect to the composition and describe methods of catalyst preparation	4. the ability to chose and apply appropriate mathematical/numerical methods for problem solving,		
5. propose a mechanistic kinetic expression for bimolecular reaction			
6. identify the factors that affect the overall reaction rate of heterogeneous catalytic reactions			
7. derive the effectiveness factor with respect to the intraparticle diffusion and interphase diffusion			
8. identify different types of the experimental reactors used to determine reaction rates			
9. apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models.			

FKITMCMXIX

University of Zagreb Faculty of Chemical Engineering and Technology

FORM 2

Teaching unit	Learning outcomes	Evaluation criteria
Introduction. Homogeneous catalysis: acid-base, catalysis with metal ions.	 explain the mode of action of catalysts compare homogeneous and heterogeneous catalysts 	 formulate criteria for the comparison of homogeneous and heterogeneous catalysts identify catalytic features
Kinetics and mechanism of homogeneous catalytic reactions.	 indicate the basic features of homogeneous catalysis classify homogeneous catalytic reactions 	 explain the influence of the catalyst on the reaction kinetics and thermodynamic features explain the catalytic effect on the activation energy and the reaction order
Heterogeneous catalysis. Physical adsorption and chemisorption. The composition and preparation of the catalyst.	 explain the theory of heterogeneous catalysis highlight the differences between physical adsorption and chemisorption specify different methods of preparing the catalysts 	 explain the importance of chemisorption for heterogeneous catalysis explain the influence of the synthesis parameters on the catalytic and performance properties of the catalyst
The kinetics and mechanism of heterogeneous-catalytic reactions.	 distinguish between empirical and mechanistic kinetic models explain the Langmuir - Hinshelwoodov mechanism 	 derive kinetic model for mono-molecular and bimolecular reaction determine the effect of temperature on the rate of heterogeneous catalytic reactions
The overall reaction rate of the heterogeneous-catalytic reactions. Heat and mass transfer in catalytic reactors.	 identify the successive steps involving in the overall reaction rate of the heterogeneous catalytic reaction compare microkinetics vs. macrokinetics 	- illustrate the temperature and concentration gradients around and within the porous catalyst for the exothermic heterogeneous catalytic reaction

Effectiveness factors: interphase and intraphase. Experimental methods and criteria in the kinetic studies.	 describe different types of the experimental reactors used to determine the rate of reaction explain the experimental method to investigate the influence of inter- and intraphase diffusion and determination of the reaction regime 	 compare the integral and differential reactors outline the criteria and explain the experimental methods to assess the influence of the physical processes of heat and mass transfer on the overall reaction rate
Selectivity of the catalyst.	 compare different types of selectivity determine the influence of chemical and physical properties of the catalyst on the catalyst selectivity 	- distinguish between different types of selectivity
Catalyst deactivation. Kinetics and mechanism of catalyst deactivation. Diffusion and deactivation. Selectivity and deactivation. Prevention of catalyst deactivation and catalyst regeneration.	 define the concept of the catalyst deactivation identify possible mechanisms of catalyst deactivation illustrate the influence of mass transfer on the rate of deactivation 	 compare the kinetic models of deactivation for different mechanisms of deactivation compare different types of the poison adsorption on the catalytic surface explain the difference between catalyst reactivation and catalyst regeneration

1) Course teacher: Igor Sutlović, associate professor		
2) Name of the course: Energetics		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: obligatory		
5) Expected learning outcomes at the level of the course:	6) Learning outcomes at the level of the study programme:	
 recognize energy consumption trends know energy transformations understand term and sense of energy efficiency 	 know technical and economical role of energy in industry and society recognize energy flows in certain process detect possible energy savings in process 	
4. evaluate role of renewable energy sources		

Teaching unit	Learning outcomes	Evaluation criteria
1. Role of energy in industry	- define correlation between different categories of energy consumption	- set connection between energy consumption and production data
2. Energy classification	- know classification regarding direction of energy transformation and origin of primary energy source	- classify certain form energy and evaluate applicability of some energy source for certain process
3. Energy transformations	- recognize appropriate forms of energy for energy supply of industrial processes	- for certain process propose way of energy supply
4. Energy efficiency improvement	- recognize waste heat sources and how to use them	- propose energy saving on certain process
5. Renewable energy sources	- know advantages and disadvantages of RES	- know constraints of RES in industrial processes

1) Course teacher: Prof. Aleksandra Sander, PhD		
2) Name of the course: Thermal Separation processes		
3) Study programme (undergraduate, graduate): Chemical Engineering (undergraduate)		
4) Status of the course: Required		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
 outcomes): 1. The ability to select methods that are feasible for separation of a mixture from physical-chemical data for the compounds in the mixture. 2. The ability to understand how various parameters influence the capacity, degree of separation and energy efficiency of various separation process. 3. The ability to solve material and energy balances combined with phase equilibria for the analysis of various separation processes. 4. The ability to develop skils in solving engineering problems related to the design and performance of the separation process. 5. The ability to develop experimental skils necessary for analysis and the performance of the separation processes. 	 Organizational and planning abilities necessary to perform simple experiments with available laboratory equipment and devices. The ability to apply scientific methods in process analysis and modelling and in product design. The ability to apply the methodology of the theoretical interpretation of experimental results. The ability to apply fundamentals of natural sciences which are necessary for identification and description of simple engineering problems. 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Heat exchangers	 identify types of heat exchangers and explain their advantages and disadvantages decide about the fluid streams allocation analyze heat exchanger 	 distinguish different types of heat exchangers apply theoretical knowledge in solving numerical examples use diagrams for F-factor,

University of Zagreb Faculty of Chemical Engineering and Technology

 performance evaluate the necessary heat transfer area based on the kinetic equation define and evaluate the driving force for the heat transfer, heat exchanger efficiency and the number of transfer units evaluate the individual and the overall heat transfer coefficients and the pressure drop on the shell and tube sides 	heat exchanger efficiency, friction factor and heat transfer factor - determine graphically and numerically heat transfer coefficients and pressure drop on the tube and shell side of heat exchangers - evaluate the performance of heat exchanger based on their own experimentally obtained results
 Identify and explain the operation of different types of evaporators explain the boiling point elevation solve the material and heat balances of the evaporator, and the kinetic equation for heat transfer explain the energy saving methods recognize differences between single and multistage evaporators 	 students answers questions related to evaporators schematically illustrate evaporator and define inlet and outlet streams apply the linearity rule (Durhing) for determination of the boiling point elevation use tables and diagrams necessary for the calculations solve numerical examples using material and heat balances and kinetic equation
 define and explain different crystallization methods explain methods for achieving supersaturation explain mechanism and kinetic of the nucleation and crystal growth explain the influence of process conditions on the crystallization kinetic and the granulometric properties of the crystals solve the material and heat 	 select the appropriate crystallization method based on the solubility diagrams define the driving force (supersaturation) distinguish different types of nucleation schematically illustrate crystallizer and define inlet and outlet process streams apply theoretical knowledge in solving numerical examples related to the
	 performance evaluate the necessary heat transfer area based on the kinetic equation define and evaluate the driving force for the heat transfer, heat exchanger efficiency and the number of transfer units evaluate the individual and the overall heat transfer coefficients and the pressure drop on the shell and tube sides Identify and explain the operation of different types of evaporators explain the boiling point elevation solve the material and heat balances of the evaporator, and the kinetic equation for heat transfer explain the energy saving methods recognize differences between single and multistage evaporators define and explain different crystallization methods for achieving supersaturation explain the influence of process conditions on the crystallization kinetic and the granulometric properties of the crystallis

	balances of the crystallizer, and the kinetic equation for heat transferevaluate basic dimensions of the crystallizer and heat transfer coefficient	crystallization from solution
4. Drying	 definine types of moisture in the material define drying method based on the wet material characteristic describe heating methods solve material and heat balances illustrate the drying process in the humidity charts define and explain the drying rate periods define the moisture transfer mechanisms explain the energy saving methods evaluate the basic dimensions of the selected dryers 	 explain humidity charts illustrate and explain drying curves define the controlling mechanism for mass transfer distinguish psychometric and gravimetric methods evaluate the mechanism of moisture transfer evaluate basic dimensions of the fluidbed and rotary dryer
5. Distillation	 use phase equilibrium diagrams define and explain the performance of different distillation methods define inlet and outlet streams in the distillation column derive the operating lines from the mass balance equations graphically and numerically determine the number of transfer units 	 distinguish different methods of distillation evaluate the feasibility of the separation of binary mixture by distillation distinguish zeotropes and azeotropes schematically illustrate the distillation column with the inlet and outlet process streams evaluate the heat consumption of the condenser and evaporator

	 analyze the influence of the feed conditions, reflux ratio and number of transfer units on the composition of distillate define the height of the transfer unit evaluate basic dimensions of the distillation column 	 apply the McCabe-Thile and Ponchon Savaritovom method for determination of the number of transfer units make decision about the column internals
6. Extraction	 explain the feasibility of the separation of liquid mixture by extraction define major properties of the solvent and select the appropriate solvent for extraction solve mass balance and kinetic equation of an extractor define methods for liquid-liquid extraction describe methods for increase of the specific surface area explain the performance of different types of extractors evaluate the mass transfer coefficient 	 select the appropriate solvent based on the physicochemical properties of the phases and phase equilibrium data, taking into account the solvent recovery by means of distillation schematically illustrate different types of extractors with the inlet and outlet process streams illustrate the process in the phase equilibrium diagrams (ternary, distribution) define and calculate the driving force for the mass transfer graphically and numerically determine the number of transfer units list the equipment for extraction
7. Absorption	 define the basics of the absorption (phase equilibrium, mass transfer) define significant solvent properties apply mass balance and kinetic equation explain the methods of performing absorption 	 select the appropriate solvent apply McCabe Thile method for determination of the number of transfer units illustrate the operating line in the equilibrium diagram for different absorption methods perform simple calculations

	 explain NTU/HTU concept define parameters significant for the design of the absorption column 	related to the dimensioning of the absorber - determine the flooding velocity
8. Selection of the feasible separation process and the corresponding equipment	 select the feasible separation process select the appropriate equipment 	 decide about the feasibility of the selected separation process based on the physicochemical properties and the phase equilibrium apply selection guides for different types of equipment

y Hocking

1) Course teacher: Vanja Kosar		
2) Name of the course: Chemical Read	tors Engineering	
3) Study programme (undergraduate,	graduate): Undergraduate	
4) Status of the course: Active		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
outcomes): 1. define process variables and parameters of chemical reactors	1. apply the methodology of chemical engineering when choosing a reactor for the implementation of certain types of reactions	
2. implement the kinetic models based on the physical picture of the process or conducted kinetic experiment	2. apply mathematical numerical and / or analytical methods in estimation of the kinetic model parameters	
3. vary the reaction kinetics in homogeneous and heterogeneous systems	3. apply the acquired knowledge in modeling and design of chemical reactors	
4. set up the mathematical models of the processes with chemical reaction in various types of reactors (kinetic and reactor model)	4. apply mathematical methods, models and techniques in solving case studies	

Teaching unit	Learning outcomes	Evaluation criteria
1. The theory of process space and a chemical reactor	 define the chemical reactor as the basic unit of chemical processes define the process space, system boundaries, and input and output variables of the process define the basic division and classification of chemical reactors 	 distinguish between the main types of chemical reactors apply the basic law of material conservation and define mass balances of select process
2. The ideal reactor types and their mathematical models	- define the reactor model for batch reactor	- predict the features of a batch reactor while conducting heat and mass

	 define the reactor model for CSTR reactor define the reactor model for plug-flow reactor 	 balances predict the features of a CSTR reactor while conducting heat and mass balances predict the features of a plug-flow reactor while conducting heat and mass balances
3. Kinetic models in homogeneous and heterogeneous systems	 define the dependence of reaction rate on temperature define the characteristics of the kinetics of reactions in homogeneous systems define the characteristics of the kinetics of reactions in heterogeneous systems 	 vary the basic features of chemical reactions in homogeneous and heterogeneous systems apply the Arrhenius dependence in determining the activation energy of conducted kinetic experiment
4. The main types of heterogeneous systems reactors	 reactors for implementation non-catalytic fluid - solid reactions reactors for implementation gas- liquid reactions 	 apply the core model or a model of continuous reaction kinetics when defining non-catalytic reaction fluid-solid apply the Whitman's theory of the boundary layer during the absorption of the gas phase reactant in the liquid phase
5. Experimental methods in kinetic studies	 Define the integral method of the kinetic model parameters estimation Define the differential method to estimate parameters of the kinetic model Define the modified differential method (ID algorithm) to estimate parameters of the kinetic model Define the agreement 	 Apply different numerical methods to estimate parameters depending on the complexity of the reaction system (kinetic model and experimental reactor) Critically choose the best kinetic model based on mean square deviation criteria which describes conducted kinetic experiment

	criterion of experimental data and calculated values	
6. Non-ideal flow and mixing in chemical reactors	 Residence time distribution (RTD) curves - theory Define models of flow in chemical reactors Define the impact of chemical reactions on the RTD curves 	 Distinguish the causes of deviations from ideal flow and mixing Experimentally determine the RTD curves Applied axial dispersion flow model to describe the deviations from the ideal flow in tubular reactors

a) Course teacher: Assoc. Prof. Nenad Bolf, Ph. D.		
b) Course: Process Measurements and Control		
c) Title of the study program: Chemical engineering		
d) University education level: Undergraduate		
e) Academical year: 3 f) Term : 6		
g) Teaching method: h) Hours (weekly)		
1. Lectures	3	
2. Practical (laboratory) work	2	
3. Seminar 1		
4. Field teaching (days) 0		

h) Aim of the course:

To teach students on the process measurement, introduce them to metrology and its infrastructure, process dynamics and methods of automatic process control

i) Course learning outcomes (4-8):	j) Program learning outcomes:
1. To determine process dynamic characteristics	1. To apply chemical engineering methodology in the process development
2. To interpret features of transducers and transmitters	2. To apply mathematic methods, models and techniques in solving examples
3. To get familiar with metrology infrastructure, standardization and	3. To perform process measurements and to control processes
accreditation system	4. To analyze and optimize chemical and
temperature, pressure, level, concentration and other process measurements	related industry processes
4. To read, interpret and sketch P & I diagrams	
5. To design and tune the controller	
6. To design simple regulatory schemes and automatic process control systems	
7. To understand components and operation of modern process control systems	

k) Teaching units with associated learning outcomes and evaluation criteria		
Teaching unit	Learning outcome	Evaluation criteria
1. Process control and control loop	Understand the basics concepts of process control; Understand the purpose of the process control; Understand the structure and purpose of the control loop; Identity and select the components of the control loop; Set up a simple control loop mathematical model.	Describe and interpret the control loop operation. Develop control loop mathematical model.
2. Dynamic behaviour of the process	Identify the characteristics of the process dynamic response; Graphically and computationally determine the process time constant; Understand consequences of delays and dead times in the process and their influence on the process control.	To define input and output variables and parameters. To determine process parameters.
3. Features of the transducers and their behaviour	Understand the role and functioning of the measuring sensors and transducers; Interpret general features of transducers; Familiarize with dynamic behaviour of the signal transmission sensors and systems.	To calculate the parameters and estimate dynamic behaviour of transducers.
4. Transducers	Understand the function, and select the flow, temperature, pressure and level transducer; Understand the function, and select transducer of other process variables.	To select appropriate transducers for specific application.
5. Metrology and metrology infrastructure	Knowing the basics of legal metrology and metrology infrastructure; Knowing the role of measurement and testing laboratories, as well as standards and accreditation.	To explain the structure and importance of the metrology infrastructure.
6. Controller	Knowing the structure and understanding operation of proportional, integration and derivate controller;	To calculate the controller parameters based on dynamic process response.

	Tune up the controller and determine the controller parameters.	
7. Cascade control	Understand the purpose and operation of the cascade control; Choose variables and structure of the cascade regulation; Tune up cascade controller.	To draft the cascade control loops. To determine the controller parameters.
8. Feedforward and multivariable control	Understand the concept of the feedforward control; Perform structural equation of the feedforward control for the given process; Knowing the basics of the multivariable control, and the structure of the multivariable controller.	To explain the concept of the feedforward control control. To describe tasks of multivariable control and the way of implementation.
9. Control valve	Know types and purpose of control valves, and understand their functioning; Determine the coefficient and characteristics of the valve; Know the factors influencing on dynamic behaviour of the valve.	To calculate valve coefficient and to estimate dynamic behaviour of the control valve.
10. Non-linearity compensation and adaptive control	Understand the nature and consequences of non-linearity; Adopt ways to compensate non- linearity; Understand the concept of adaptive control and tuning.	To explain the occurrence of non-linearity. To describe methods to compensate the non-linearity and adaptive control.
11. Structure of modern control systems	Identify the basics hardware components of the control loop; Know the elements of modern control systems.	To identify the elements of modern control loops.
12. New guidelines and concepts of process control	Know the basic tools of statistical process control; Understand the basic applications of artificial intelligence and expert systems; Understand the term of computationally integrated production.	To list and explain basic methods of the statistical process control. To understand the concept of computationally integrated production.

l) Student assessment	
1. Assessment methods	2. Examination

- homeworks and seminars	- continuous monitoring and evaluating
- colloquia/partial exams	- written exams
- written exams	

m) Evaluation criterion

1. Continuous monitoring and evaluating

Activity and corresponding r	number of points	Evaluation criterion	
Activity	Points	Grade	Points
- colloquia	55	sufficient (2)	60-69
- laboratory	20	good (3)	70-79
- homeworks and seminars	20	very good (4)	80-89
- participation in class	5	excellent (5)	90-100
TOTAL	100		

2. Written exam

Activity and corresponding number of points		Evaluation criterion	
Activity	Points	Grade	Points
- Development of the dynamic process model	30	sufficient (2) good (3)	60-69 70-79
- Calculation of the transmitter's characteristics	20	excellent (5)	80-89 90-100
- Making of a regulatory scheme	15		
- Calculation of controller's parameters	20		
- Sizing of an actuator and control valve	15		
TOTAL	100		

3. Oral exam – as required

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Felicita Briški, PhD.		
2) Name of the course: Environmental Ecology		
3) Study programme - undergraduate	: Chemical Engineering	
4) Status of the course: optional		
 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 1. to apply the principles of industrial ecology in industrial systems 2. to calculate the flow of matter and energy for the selected production process 3. to assess the effectiveness metrics for different levels (local, national, global) 4. to choose data and sketch a simple diagram of the production system 	 6) Learning outcomes at the level of the study programme: 1. to point to the systematic approach of fitting of industrial systems in the natural environment 2. to analyze and evaluate the state of the environment 3. to use specialized tools for designing sustainable industrial system 4. to support collaboration and promote a team approach to solving an environmental problems 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Environment and anthrophosphere, status of resources, and industrial systems	 explain the impact and integration of anthrophosphere in the environment and regulatory approach to pollution prevention to identify the availability and accessibility of natural resources to apply the principles of industrial ecology in industrial systems to analyze the material and energy flow in the industrial system 	 describe and schematically show the anthrophosphere integration in the environment estimate availability and accessibility of a given natural resource, and evaluate its use explain the design of the production process according to the principles of industrial ecology evaluate the effectiveness of a given industrial process based on the material and energy productivity
2. Industrial ecosystems,	- to compare the natural and industrial metabolism and	- explain the features of

design and product development, and life-cycles of industrial products	define the components of the industrial ecosystem - to organize a team and implement industrial ecology tools for designing a new product / process - to apply life-cycle assessment	natural and industrial metabolism, sketch and compare an open and closed industrial system - define the team members and choose the tools to develop a given product / process - analyze the life-cycle of a given product (e.g. chemical industry, organic synthesis)
3. Corporate industrial ecology toolbox and implementation of industrial ecology in corporations	 to explain the phases and tools applied in the corporate industrial ecology to implement environmental management systems in corporations to implement a policy of pollution prevention in the corporation 	 define the phases for implementation the principles of industrial ecology for a given company select the tools for meeting regulatory requirements for environmental pollution prevention describe the organizational structure of environmental group in the company and explain the given norm
4. Indicators and Metrics	 to define indicators and metrics to select indicators and metrics for different spatial scales and organizational entities 	 explain the importance and development of indicators and metrics explain the most common metrics in corporations, and select indicators and metrics for a given company

1) Course teacher: Prof. Sanja Papić, PhD		
2) Name of the course: Surfactants		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: regular		
 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 1. Explain the basic terms and properties of surfactants 2. List and recognize surfactants from the individual classification groups 3. By mathematical expressions, explain surface phenomena important for the application of surfactants 4. Describe and analyze the processes of production of selected types of surfactants 5. Explain the role of certain compounds in the formulation of detergents 	 6) Learning outcomes at the level of the study programme: 1. Ability to use fundamental knowledge of natural sciences in identifying and describing simple engineering problems 2. Ability to organize and plan simple experiments using the available laboratory equipment and devices 3. Ability to apply the scientific methods in the analysis and modeling of processes and product design 	

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1. The properties of surfactants	-Define the basic terms -Explain the properties of surfactants -Classify surfactants	-Define the basic terms (surface tension, surface active agents or surfactants, micelles, CMC -critical micelle concentration, solubilization) -Relate the specific structure of surfactant molecules with their properties -Know the chemical characteristics, properties and applications of anionic, cationic, nonionic and ampholytic surfactants

2. Surface phenomena important for the application of surfactants	 Explain the phenomena on the surface and at the interface important for the application of surfactants Apply the mathematical expressions to describe the surface phenomena 	 -Explain the phase behaviour of surfactants (L/G, L/L, L/S): surface tension, interfacial tension, wetting, stabilization of emulsions and foams using mathematical expressions. -Know the emulsion types. Explain the breakdown and stability of the emulsions. -Explain the foaming, defoaming and stabilising effects in foams.
3. Production processes of selected surfactants	-Describe the processes for the production of selected surfactants -Analyze the process of production of the selected type of surfactant by applying scientific methods	-Describe the processes of preparation of selected anionic, cationic, nonionic and ampholytic surfactants -Know on the basis of the conducted experiment to analyze the process of production of the selected type of surfactant (to evaluate the influence of process parameters)
4. Detergents	-Describe the detergent ingredients -Explain the role of certain compounds in the washing process	-Know the categorization groups of detergents ingredients -Know the role of certain compounds in the washing process -Give example of formulations of detergents for different uses

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Full Prof.Katica Sertić-Bionda, PhD		
2) Name of the course: Petroleum Refining Processes		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: elective		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. to identify the main parameters of separation and conversion petroleum refining	1. to apply fundamentals of natural sciences, necessary for identification and description of simple engineering problems.	
processes.2. to relate the composition and characteristics of petroleum/ petroleum products.	2. to identify, define and solve simple engineering problems with relevant methodologies and available program packages.	
3. to recognize the influence of petroleum refining processes parameters on products characteristics.		
4. to outline the simple scheme of petroleum refining processes.		

Teaching unit	Learning outcomes	Evaluation criteria
1.Separation and conversion processes in petroleum refining	- to identify the main parameters of petroleum refining processes.	- to identify the main parameters of given petroleum refining process (feedstocks, catalysts, prosess variables).
2. Petroleum products	- to recognize the effects of process parameters on products characteristics.	- for given petroleum refining process explain the effects of the main process parameters on characteristics of products.

a) Course teacher: Assoc. Prof. Nenad Bolf, Ph. D.		
b) Course: Process Measurements and Control		
c) Title of the study program: Chemical engineering		
d) University education level: Undergraduate		
e) Academical year: 3 f) Term : 6		
g) Teaching method: h) Hours (weekly)		
1. Lectures	2	
2. Practical (laboratory) work		
3. Seminar -		
4. Field teaching (days) -		

h) Aim of the course:

Instruct students to use the software package MATLAB/Simulink and its advanced functions for chemical engineering calculation, display and analysis of measurement data, modelling and process optimization.

i) Course learning outcomes (4-8):	j) Program learning outcomes:
1. Solve systems of equations by matrix calculation in a software package	1. To apply chemical engineering methodology in the process development
2. Apply advanced features for analyzing and displaying data	2. To apply mathematic methods, models and techniques in solving examples
3. Perform symbolic functions and calculations	3. To perform process measurements and to control processes
4. Analyze measurement data using the Statistics, Curve Fitting, Spline and System Identification Toolbox	4. To analyze and optimize chemical and related industry processes
5. Develop process models in a graphical user interface using the Simulink	
6. Solve examples of continuous, discrete and hybrid systems	

k) Teaching units with associated learning outcomes and evaluation criteria		
Teaching unit	Learning outcome	Evaluation criteria

MATLAB / Simulink. Environment, interface and basic operations. Manipulating vector, matrices and fields. Data structures and programming.	Solve systems of equations by matrix calculation using the software package.	Solve the system of equations by matrix calculation.
Process and system simulation. Methods and tools for simulation. Plotting and graphic display.	Apply advanced features for solving, displaying and data analyzing.	Solve and analyze the dynamic model of process/ system applying numerical methods.
Symbolic computation fundamentals. Using functions for symbolic computation.	Solve symbolic expressions and equations and linear algebra examples. Apply special functions in the graphical environment.	Solve given symbolic expression or equation.
Data processing in Curve Fitting Toolbox. Parametric and nonparametric fitting. Spline Toolbox.	Process measurement data and calculate fitting statistical. Apply the method of linear and non-linear regression using parametric and non-parametric models. Linear and nonlinear fitting procedures.	Implement regression analysis and data processing in the program interface.
System identification. Parametric and non- parametric identification. Model validation.	Develop a dynamic model of process/system using identification methods. Derive the model in a graphical environment.	Solve the example of dynamic identification based on the real plant data.
Simulink fundamentals. Developing process/system model. MATLAB/Simulink connectivity and interaction.	Develop continuous, discrete, and hybrid models of linear and nonlinear systems.	Develop a process/system model in a graphical environment by using block diagrams.
Programming in the Simulink graphical environment.	Simulate and analyze dynamic systems in the graphical environment.	Conduct a simulation and analyze the simulation results.

l) Student assessment		
1. Assessment methods	2. Examination	
- homework and seminars	- continuous monitoring and evaluating	
- colloquia/partial exams	- computer exams	
- computer simulation		
m) Evaluation criterion		

1. Continuous monitoring and evaluating				
Activity and corresponding number of points		Evaluation criterion	Evaluation criterion	
Activity	Points	Grade	Points	
 computer simulation colloquia/partial exams participation TOTAL 	55 40 5 100	sufficient (2) good (3) very good (4) excellent (5)	60-69 70-79 80-89 90-100	
2. Written exam		1		
Activity and corresponding r	number of points	Evaluation criterion		
Activity	Points	Grade	Points	
- Solving of a system of equation	20	sufficient (2) good (3)	60-69 70-79	
- Solving of a symbolic equation	10	excellent (5)	90-100	
- Statistical data analysis	20			
- Identifying process models	25			
- Model development in the Simulink	25			
TOTAL	100			
3. Oral exam – as required				

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. dr. sc. Veljko Filipan		
2) Name of the course: ENGINEERING THERMODYNAMICS		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
outcomes): 1. apply basic thermodynamics laws for thermodynamic calculations of processes	1. apply fundamental principles for identification and description of simple engineering problems	
with ideal and real working media2. apply graphical representation in defining and analysis of thermodynamic processes	2. define and solve simple engineering problems with relevant methodologies and available program packages	
3. use tables and diagrams with thermodynamic properties of some particular real working media applied in real processes	3. chose and apply appropriate mathematical/numerical methods for problem solving	
and devices4. define energy indicators of thermodynamic processes and devices working in heating and cooling modes	4. apply basic information and communication technologies5. learning skills and competences required for further vocational training	

Teaching unit	Learning outcomes	Evaluation criteria
	 understand basic terms and definitions in engineering thermodynamics differentiate thermodynamic 	- define basic thermodynamic state quantities and thermal quantities
1. basic thermodynamic laws and thermodynamic quantities	 quantities such as enthalpy entropy, heat, energy and work - connect the 1st and the 2nd law of thermodynamic differentiate thermodynamic 	 exprain analytical expressions of thermodynamic laws calculate mechanical work due to volume changes and technical work
	- differentiate thermodynamic processes according to the direction of the process	- define basic cyclic processes

2. processes with ideal working media	- define basic processes with ideal gasses; represent them in diagrams	- reproduce and explain the equation of state for ideal and real working media
	- define processes of compression and expansion; differentiate real and ideal	- sketch p,v T,s and h,s diagrams of basic processes with ideal gasses
	ones - calculate reversible and irreversible thermodynamic processes with ideal gas - know achievable cyclic processes	 generate diagrams of achievable cyclic processes calculate thermodynamic properties and energy performance of particular cyclic processes
3. processes with real working media	 explain thermal properties and changes in real working media use charts and tables with properties of real working media in calculation of basic process 	 sketch and explain diagrams of basic thermodynamic processes with real working media use h,d diagram for defining real processes with wet air

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof.dr.sc. Ljubica Matijašević					
2) Name of the course: Chemical Plant Design I					
3) Study programme (undergraduate, graduate): graduate					
4) Status of the course: mandatory					
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:				
1. recognize the role of chemical engineers in plant design.	1. relate the basic knowledge acquired at undergraduate level				
2. explain the mass and energy balances and their importance in equipment selection and sizing.	2. recognize the role of chemical engineers in the preparation of project documentation				
 reproduce of the process flow diagram with process simulator ChemCAD write project documentation according to standards based on project task- preliminary or base project (simple example). 	3. select the informations which are base for optimization and process control4. apply of knowledge in making environmental impact study and feasibility study				

Teaching unit	Learning outcomes	Evaluation criteria
1. Chemical engineers and process design	 recognize the role of chemical engineers in the process design define the project task and the role of project manager describe of process development, explain the role of thermodynamic and physical properties at the process design use the standards, regulations and recommendations in the process design 	 -show the structure of process development - list the content of project documentation - indicate the standards to be applied in the project documentation -analyze of project task
2. Steps of Chemical Engineering Design	- steps of chemical engineering design	- generate BFD, PFD or PI & D diagrams for the

University of Zagreb Faculty of Chemical Engineering and Technology

	- reproduce of flow sheets used in	selected process
	- select information and standards	- apply a standard labels of equipment, electricity and
	in project documentation	utilities
	- explain the simulation process and provide information about available software	- for give example perform process simulation by ChemCad software and report the mass and energy balance
	- reproduce mass and energy balances on examples and explain the importance of the results for equipment sizing	
3. Sizing of key process equipment	- indicate standard vs. non- standard equipment, select of process equipment and recognize key dimensions	- extract the parameters for the design of individual equipment
	- estimate pumps, compresors, unit operations, heat exchangers,	 compute dimensions of individual process equipment integrate auxiliary plants
	separators and flesh drums	
	ancillary facilities	with the main process
4. Estimating of capital and operating costs (utilities)	- reproduce correlation to estimation of purchased equipment cost (effect size, material, pressure	- employ correlations to estimate the purchase cost of selected process unit
	and type of equipment)	- distinguish the meaning
	- analyze segments of investment and evaluate capital cost estimating methods (factorial method and rapid method)	of the installation factor and the inflation index
		- assess the operating costs of process unit
	- indicate operating costs and select the parameters that affect the operating costs (fixed and/or variable cost)	1
5. Safety, loss prevention and environmental impact	- identify aspects of process safety and their impact on the	- explain aspects of process safety
	- define and explain the hazard analysis (Dow and Mond-Dow indexes, HAZOP study)	- evaluate and justify the hazard Analysis and HAZOP study

1) Course teacher: prof. Aleksandra Sander, PhD		
2) Name of the course: Chemical engineering laboratory		
3) Study programme (undergraduate, graduate): Chemical engineering (graduate)		
4) Status of the course: required		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
 outcomes): 1. The ability to understand and apply methodologies for solving problems in chemical engineering. 2. The ability to derive mass and heat balances for different types of chemical engineering problems. 3. The ability to mathematically interpret balance equations. 4. The ability to apply appropriate mathematical modeling method for solving chemical engineering problems. 	1. The ability to recognize importance and the role of chemical engineering as scientific and engineering discipline.	
	 2. The ability to apply methodology for browsing the scientific literature. 3. The ability to work both independently and 	
	in multidisciplinary teams as well as to make decisions in complex situations.4. The ability to develop basic skills for planning and aching complex methods.	
	5. The ability to enhance graphical and numerical methods for problem solving.	
	6. The skill to identify, define, solve and present research results related to their problem (orally and in writing).	

Teaching unit	Learning outcomes	Evaluation criteria
1. Defining problem and its scope, browsing the scientific literature, gaining theoretical knowledge, defining mathematical model of the process, working plan.	 to precisely identify and define chemical engineering problem to apply methodology for browsing the scientific literature to relate theoretical and practical aspects of the problem to plan and work in small 	- Oral report – in front of teachers and students

	teams	
2. Establishment of analytical methods and techniques, set- up of the apparatus, defining computer support, plan of the experiment, selection of the optimization methods.	 to plan the experimental set-up to use the techniques, skills and modern engineering tools necessary for construction of the apparatus to adopt and apply specific knowledge necessary for the selected analytical methods and techniques 	- Oral report – in front of teachers and students
3. Conducting the experiments, development of mathematical model, evaluation of parameters and process optimization	- to adopt and apply advanced specific knowledge necessary for the selected analytical methods and techniques	- Oral report – in front of teachers and students
	- to acquire skills of mathematical modeling and process optimization	
4. Conducting the experiments, validation of the selected mathematical models, and preparation of written final report.	 to apply advanced skills of mathematical modeling and process optimization to develop the ability for critical evaluation of results to present research results orally and in writing 	 Oral report – in front of teachers and students written final report

1) Course teacher: Vesna Tomašić			
2) Name of the course: Chemical reactors			
3) Study programme (undergraduate, graduate): Chemical Engineering (graduate)			
4) Status of the course: m	andatory		
 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 1. define process variables and parameters of chemical reactors 2. develop mathematical models of processes in various types of chemical reactor 3. distinguish different approaches to the modeling of the reactor with respect to the features of the reactor with respect to the features of the reaction system, features of process, reaction rate and working conditions 5. describe flow pattern inside the reactor 6. explain the different types of the multiphase reactors 7. apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models and reactor models. 6) Learning outcomes at the level of the study programme: 1. the ability to understand and apply the fundamentals of mathematics, the basic sciences, engineering sciences and engineering design methods 2. the ability to design a system or process to meet desired needs within realistic constraints, such as economics, environmental, social, ethical, health and safety, manufacturability and sustainability 3. the ability to understand and apply specific chemical engineering skills such as mass and energy balances, single and multicomponent thermodynamics, fluid mechanics, heat and mass transfer operations, process design 4. the ability to identify, define and solve complex engineering problems with relevant methodologies and available program packages. 			
7) Teaching units with the corresponding learning outcomes and evaluation criteria			
Teaching unit	Learning outcomes Evaluation criteria		Evaluation criteria

1. Kinetics of heterogenous		- explain the approach in
catalytic reactions		developing mechanistic
		kinetic model
		- develop a general
		mechanism of reaction on
	- analyze connection between	the example of bimolecular
	the adsorption phenomena	reactions at different active
	and chemical reaction on the	determine from
	surface of catalyst	- determine from mechanisms the kinetic rate
	reaction times and space	expression and its
	times	temperature and
	- explain the basic features of	concentration dependence
	the Hougen-Watson	- identify the stages in the
	mechanistic kinetic models	general reaction pathway for
	- derive kinetic model for the	heterogeneous catalytic
	catalyst deactivation with	reaction
	respect to the different	- describe the difference
	mechanisms of deactivation	between physical adsorption
	- define the overall	and chemisorption
	effectiveness factor with	- compare the experimental
	introportiolo diffusion	impact of intermediate and
	intraparticle diffusion	intraparticle diffusion on the
		reaction
		- demonstrate the ability to
		use the general reaction
		engineering principles in
		different application areas
2. Selection and design of	- define the factors	- propose the reactor design
reactors, comparison of	reporter	on the example of the
basic types of reactors	- consider the basic types of	give examples of possible
	reactors with respect to their	reactor types for carrying out
	volume	exothermic reactions
	- classification of the reaction	- derive an expression for
	system with respect to the	calculating the temperature
	thermal effects of the reaction	sensitivity of reaction
	- express the temperature	- assess the potential hazards
	sensitivity of reaction	of various reactor types in
		case of exothermic reactions
		- the ability to understand and
		apply the fundamentals of
		mathematics, the basic
		sciences, engineering

		sciences and engineering design methods: - demonstrated in homework, and periodic exams.
3. Batch reactor	 develop the batch reactor model define the overall heat transfer coefficient with the assumption of the heat exchanged through the reactor walls explain the optimization of the batch reactor 	 write an heat balance equation for the stirred-tank reactor with the heat exchange through the reactor mantle write an heat balance equation for the reactor in the isothermal work conditions write an heat balance equation for the reactor in a heat balance
4. Continuous flow stirred tank reactors (CSTR)	 explain the difference between the continuous flow stirred tank reactors at the stationary and non-stationary conditions (CSTR vs. CSTRn) derive the reactor model of CSTR analyze the stability of CSTRs 	 write basic mass and heat balance equations for CSTR and CSTRn simplify the basic mass and heat balance equations with the use of equivalent units or with the assumptions of the specific reaction conditions write heat balance equations of CSTR for different types of heat exchange
5. Tubular reactors	 summarize the basic features of the tubular reactors explain the complexity of the mathematical models of the tubular reactors explain models of flow in CR illustrate the essential features of 1D and 2D models for homogeneous and heterogeneous systems calculation of the appropriate mass and heat transfer coefficients 	 identify factors that affect the complexity of the mathematical models of tubular reactors explain the model of axial dispersion write a model of the tubular reactor with laminar flow compare the methods for solving equations of the reactor models apply appropriate numerical method for solving model equations

6. Multiphase reactors	 summarize the basic features of multiphase reactors analyze the performance of the gas-liquid reactors describe the performance of three-phase reactor with a catalyst as solid phase explain the classification of the multi-phase reactors 	 give examples of major design types of the multiphase reactors generate examples of reactions in two-phase and three-phase systems summarize the general features of the multiphase reactors design and interpret rate experiments, assess the effect of transport phenomena on observed rates and determine the rate of reaction quantify the effect of operating variables in various reactor types on product quality and purity and energy efficiency

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Full Prof. Katica Sertić-Bionda, PhD., Full Prof. Ante Jukić, PhD.			
2) Name of the course: Petroleum Refining and Petrochemical Processes			
3) Study programme (undergraduate, graduate): graduate			
4) Status of the course: compulsory	4) Status of the course: compulsory		
 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 1. to relate the characteristics of feedstocks (petroleum, natural gas) with characteristics of products (fuels, lubricants, monomers, polymers). 2. to recognize the effects of petroleum refining and petrochemical process parameters on yields and composition of products. 3. to distinguish the relevance of processes regarding the application and ecological requirements on the products. 4. to estimate the reaction mechanisms for selected examples. 5. to outline the simple scheme of petroleum refining and petrochemical processes. 6. to compare the conventional and developing petroleum refining and petrochemical and petrochemical processes. 	 6) Learning outcomes at the level of the study programme: 1. to understand and apply the fundamentals of mathematics, the basic sciences, engineering sciences and engineering design methods. 2. to identify, define and solve complex engineering problems with relevant methodologies and available program packages. 		

Teaching unit	Learning outcomes	Evaluation criteria
1. Separation processes in	- to recognize the effects of	- for given petroleum refining
petroleum refining;	petroleum refining process	process explain the effects of
distillation, adsorption,	parameters on yields and	process variables, catalysts
extraction. Conversion	composition of products.	and type of feedstocks on

processes in petroleum refining; catalytic cracking, hydrocracking, catalytic reforming, isomerization, alkylation, hydrotreating, mineral oils production		yields and properties of products.
2. Petrochemical processes: natural gas treatment, production of syngas (hydrogen), synfuels by Fischer-Tropsch synthesis, ammonia and theri main derivatives.	 to identify and understand reaction mechanism of the main petrochemical processes. to outline the simple schemes of of the main petrochemical processes. 	- for a given petrochemical process explain the effects of process variables, catalysts and type of feedstocks on yields and properties of products.

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof.dr.sc. Ljubica Matijašević		
2) Name of the course: Chemical Plant Design II		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. define the terms of analysis and synthesis	1. relate the basic knowledge acquired at undergraduate level	
process 2. explain HEN and MEN design	2. the objectives of analysis and synthesis process	
3. develop the heat exchange network on example by selected method	3. apply HEN and MEN design in sustainable industrial activities	
4. develop the mass exchange network on example by selected method	4. support an integrated approach in solving problem (teamwork with other professions)	
5. connect heat and mass exchange network with practical example		

Teaching unit	Learning outcomes	Evaluation criteria
1. Analysis and synthesis of process	 define the terms of analysis and synthesis process describe the level of process development reproduce the order of performance process with an example identify key units to monitor of chemicals through the process define the terms: heat integration and mass integration select simple examples of heat and mass integration 	 reproduce concepts analysis and synthesis process with the necessary input data connect process design with levels of development process explain the onion model of the process with an example well integrate mass and heat processes, give the examples

2.Heat integration	 point out the possibility of utilization of energy in the process, generally explain the concepts of HEN design and pinch construct a composite curve (graphical method with the pinch point location) and explain the meaning ΔTmin 	 develop a composite curves and determine the pinch point for a given system of heat exchangers (meaning ΔTmin) revised heat exchangework using the rules of connection with the basic laws of thermodynamics
	- reproduce construction of heat exchange network on the example and explain the rules that are based on pinch technology	-reproduce the interval and cascade diagram on example
	- demonstrate the other methods of heat integration on the example of a heat exchangers on the processes	- analyze area above and below <i>pinch</i> zone
3. The pinch area of	 -construct the grand composite curve and explain significance - select energy units (columns, pumps, thermal machines and separation devices) and display their position in relation to the 	 illustrate a composite curve which includes other energy active units in the process with example connect save energy at distillation with composite
energy-active units	pinch area and grand composite curve - reproduce example	 - reproduce and explain grand composite curve on example
	 -define terms of mass exchanger and separation agent - explain the concepts of MEN design and pinch - reproduce correlation for mass 	- express and distinguish concepts related to mass exchange (rich and lean streams, MSA, the driving force at mass exchange)
4. Mass integration	 exchange with the mass driving force - construct a composite curve (graphical method with the pinch point location) and explain the meaning of minimum allowable composition difference 	 show the construction composite curves with pinch point loocation for a given mass exchange system express the basic correlation connected with
	-reproduce the construction of <i>pinch</i> diagram through examples	mass exchange

	- reproduce graphical, algebraic and analytic methods for mass exchange network	-interpret graphical, interval and cascade diagram on give example
5.Methods (skills) for compose mass exchange network	 reproduced examples of making mass exchange network in practice described commercial procedures for the integration of the masses with a special emphasis on the water integration 	 explain the basis of commercially programs for mass exchange systems connect the rules of mass integration with water save in processes (example)

a) Course teacher: Assoc. Prof. Nenad Bolf, Ph. D.		
b) Course: Process Modelling		
c) Title of the study program: Chemical engineering		
d) University education level: Graduate		
e) Academical year: 1 f) Term : 2		
g) Teaching method: h) Hours		
1. Lectures	2	
2. Practical (laboratory) work	2	
3. Seminar	0	
4. Field teaching (days)	-	

h) Aim of the course:

Teach students on the system approach to process modelling. Acquire modelling and simulating skills for the purpose of process identification, control and optimisation.

i) Course learning outcomes (4-8):	j) Program learning outcomes:
1. Develop and solve dynamic models of simple processes;	1. Apply chemical engineering methodology in the process development;
2. Develop and numerically solve dynamic models described by systems of equations and partial differential equations:	2. Apply mathematic methods, models and techniques in solving examples;
3. Develop empirical dynamic models based on experimental data;	 Perform process measurements to control processes; Analyze and optimize chemical and related
4. Implement the artificial intelligence methods in the model development;	industry processes.
5. Use software packages for solving process model in the programming and graphical user interface.	

k) Teaching units with associated learning outcomes and evaluation criteria		
Teaching unit	Learning outcome	Evaluation criteria
Models and modelling.	Understand and interpret basic	Apply system analysis to

Systems approach. Process space. Types of mathematical models.	concepts in process modelling and simulation. Basic types of models.	define the process space and process variables.
Models with lumped and distributed variables. Balance equations. Constitutive equations. Dynamic and steady-state models.	Knowing the basics of modelling and determine the type of model necessary for the description of chemical processes.	Establish balance equations for a given process. Develop constitutive relations.
Mathematical model development procedure. Input and output variables, parameters of the model.	Develop models of simple processes and define process and model input and output variables and parameters.	Analyze the process and derive dynamic process model.
Equation of continuity. Groups of models based on the model features.	Define and distinguish between groups of models with respect to the characteristics of the process and models.	Determine group for specific process model. Indicate its features.
Process and system model orders. Examples of models. Process model linearization.	Define the process model order. Linearized model of the process. Linearized model validation.	Determine the process model order and analyze the nonlinearity. Solve linearization problem.
Differential equation analytical and numerical solutions. Numerical methods of solving a system of differential equations. Sensitivity and stability analysis.	Choose the method of solving process model for numerical solving. Sensitivity and stability analysis.	Determine the appropriate numerical method for solving the equations for a given model (Euler, Runge-Kutta, etc.). Analyze the applied methods.
Examples of models with spatial dependence. Models with time and spatial dependence.	Develop models of typical chemical engineering processes: models of reaction and separation processes in steady and dynamic operation conditions.	Model of the absorption process in the column. Dynamical model of the tubular reactor. Model of the tubular reactor with dispersion. Model of unsteady heat transfer.
Methods of solving PDE. Direct method of solving PDE using finite-differences. PDE solving using method of lines. The initial and boundary conditions.	Provide a method of solving the PDE for given model. Prepare data for the numerical solution in the software package.	Identify and apply the method for PDE solving with respect to the process and model. Define boundary conditions.
Model parameter identification. Linear and nonlinear regression. Simplex method, Nelder-Mead.	Apply the method of linear and non-linear regression using parametric and non-parametric models. Linear and nonlinear	Identify and determine process model parameters.

method. ID algorithm.	fitting procedures.	
Identification and analysis of empirical process model. Process response curve.	Develop a dynamic model of process/system using identification method and algorithms. Derive the model in the particular software package for simulating and identifying dynamic process model.	Solve the example of identifying a dynamic process model based on data from the real process/plant.
Statistical model implementation.	Analyze process data and calculate statistical parameters. Interpret statistical indicators of process/system performance.	Implement statistical regression analysis and data processing in the software packages.
Application of the artificial intelligence methods in modelling and optimization of the process model.	Familiarize with the methods of artificial intelligence used in modelling (fuzzy logic, neural networks, genetic algorithms).	Analyze examples of the application of artificial intelligence in modelling and optimization. Develop simple models.

l) Student assessment	
1. Assessment methods	2. Examination
- homework and seminars	- continuous monitoring and evaluating
- colloquia/partial exams	- written exams
- written exams	

m) Evaluation criterion

1. Continuous monitoring and evaluating

Activity and corresponding r	number of points	Evaluation criterion	
Activity	Points	Grade	Points
- colloquia	50	sufficient (2)	60-69
- computer exercises	30	good (3)	70-79
- homework and seminars	15	very good (4)	80-89
- participation in class	5	excellent (5)	90-100
TOTAL	100		
2. Written exam			

Activity and corresponding n	number of points	Evaluation criterion	
Activity	Credits	Grade	Points
- Define system structure and develop a simple process model	30	sufficient (2) good (3)	60-69 70-79 80-89
- Choose the method and develop process model for more complex process	20	excellent (5)	90-100
- Develop an empirical process model based on experimental data	30		
- Conduct statistical data processing and analyze the processes/systems	20		
TOTAL	100		
3. Oral exam – as required			

University of Zagreb Faculty of Chemical Engineering and Technology

 2) Name of the course: Catalytic reaction engineering 3) Study programme (undergraduate, graduate): Chemical Engineering (graduate) 4) Status of the course: mandatory 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): explain an integrated approach to design of catalytic reactors distinguish between different types of catalytic reactors choose the appropriate type of reactor with respect to the features of the reaction rate and working conditions classification of the catalytic reactors with phases, the movement of the catalytis inside the reactor, the performances of the fixed bed reactors summarize the general problems connected with the performances of the fixed bed reactors apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models and reactor models. 	1) Course teacher: Vesna Tomašić		
 3) Study programme (undergraduate, graduate): Chemical Engineering (graduate) 4) Status of the course: mandatory 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): evel of the course (4-10 learning outcomes): explain an integrated approach to design of catalysts and reactors distinguish between different types of catalytic reactors choose the appropriate type of reactor with respect to the features of the reactor not the features of the reaction rate and working conditions classification of the catalytic reactors with respect to the given features (number of the phases, the movement of the catalyts inside the reactor, temperature distribution inside the reactor, the heat exchange) summarize the general problems connected with the performances of the fixed bed reactors apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models and reactor models. 	2) Name of the course: Catalytic react	ion engineering	
 4) Status of the course: mandatory 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): explain an integrated approach to design of catalysts and reactors distinguish between different types of catalytic reactors choose the appropriate type of reactor with respect to the features of the reaction rate and working conditions classification of the catalytic reactors with respect to the given features (number of the phases, the movement of the catalyst inside the reactor, the heat exchange) summarize the general problems connected with the performances of the fixed bed reactors apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models and reactor models. 	3) Study programme (undergraduate, graduate): Chemical Engineering (graduate)		
 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 1. explain an integrated approach to design of catalysts and reactors 2. distinguish between different types of catalytic reactors 3. choose the appropriate type of reactor with respect to the features of the reaction system, the features of the process, the reaction rate and working conditions 4. classification of the catalytic reactors with respect to the given features (number of the phases, the movement of the catalyst inside the reactor, the heat exchange) 5. summarize the general problems connected with the performances of the fixed bed reactors 6. apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models and reactor models. 6. apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models and reactor models. 6. apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models and reactor models. 6. apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models and reactor models. 6. apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models and reactor models. 6. apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models and reactor models. 	4) Status of the course: mandatory		
	 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 1. explain an integrated approach to design of catalysts and reactors 2. distinguish between different types of catalytic reactors 3. choose the appropriate type of reactor with respect to the features of the reaction system, the features of the process, the reaction rate and working conditions 4. classification of the catalytic reactors with respect to the given features (number of the phases, the movement of the catalyst inside the reactor, temperature distribution inside the reactor, the heat exchange) 5. summarize the general problems connected with the performances of the fixed bed reactors 6. apply the appropriate numerical and/or analytical methods to estimate parameters of kinetic models and reactor models. 	 6) Learning outcomes at the level of the study programme: 1. the ability to understand and apply the fundamentals of mathematics, the basic sciences, engineering sciences and engineering design methods 2. the ability to design a system or process to meet desired needs within realistic constraints, such as economics, environmental, social, ethical, health and safety, manufacturability and sustainability 3. the ability to understand and apply specific chemical engineering skills such as mass and energy balances, single and multicomponent thermodynamics, fluid mechanics, heat and mass transfer operations, process economics, process design 4. the ability to identify, define and solve complex engineering problems with relevant methodologies and available program packages. 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Introduction to kinetics	- explain the meaning of the	- explain the field of
and mechanism of the	term catalytic reaction	application of the results of
reaction, determination of	engineering	kinetic studies in the industry
the reaction regime;	- describe historical	- explain what makes the
integrated approach to	development and economic	chemical reactors differ from

design of catalysts and	importance of catalysis and	the other processing units
reactors	its role in the development of	- describe the difference
	chemical industry	between the differential and
	- identify the basic features of	integral reactor
	estalysis in the context of the	integral reactor
	davalopment of sustainable	
	technologies	
	technologies	
	different factors on the choice	
	and design of catalytic	
	processes for a particular	
	purpose	
2. Experimental methods	- analyze experimental	- discuss the principle of
of testing in the laboratory	methods of the catalysts at	work of gradientless reactors
reactors	the laboratory conditions	- summarize criteria for the
	- explain the way of	selection of laboratory
	collecting, analyzing and	experimental reactor
	processing the data obtained	
	in laboratory reactors	
3. Classification of the	- summarize the basic	- summarize the factors that
catalytic reactors	features of the catalytic	affect the performance and
	reactors	calculation of catalytic
	- explain the classification of	reactors
	the catalytic reactors with	- describe critical aspects of
	respect to the number of	performing the reaction in the
	phases and the nature of	gas and liquid phase
	catalysis	- give examples of multi-
	- assess different possibilities	phase reaction
	to remove the heat	
	developed/released reaction -	
	- identify factors that	
	influence the choice and	
	performance of the catalytic	
	reactor	
	- explain methods for the	
	separation of catalyst and	
	reaction products on the	
	example of the homogeneous	
	catalytic reactions	
	,	

4. Special features of the fixed bed reactor	 analyze the performance of the fixed bed catalytic reactors analyze the working principle of the adiabatic reactor; define the conditions for adiabatic operation of the reactor explain the problems in the design of the fixed bed reactors analyze the flow pattern through a fixed bed reactor 	 recognize the advantages and disadvantages of the fixed-bed reactor in comparison to the other types of catalytic reactors explain deviations from the ideal flow conditions and explain the reasons express the criteria that determine the maximum allowed pressure drop in the reactor
	 through a fixed bed reactor define the terms of the axial and radial dispersion summarize the general features of the commercial fixed bed reactors 	- determine the pressure drop through the catalytic layer using the appropriate empirical correlations
5. Moving bed reactors	 summarize the basic features of the moving bed reactors classification of the moving bed reactors describe advantages and disadvantages of the moving- bed reactors explain the basic principles of work of the fluidized bed reactors analyze the heat and mass transfer processes in the suspension reactors 	 give examples of different designs of the moving bed reactors and specify the area of their application interpret the advantages of the moving bed reactors in relation to the other types of multiphase reactors analyze the pressure drop in the moving bed reactors explain the experimental method used for determination of the fluidization points compare the performance of the trickle bed and suspension reactors

1) Course teacher: Vesna Tomašić		
2) Name of the course: Air Pollution (Control Equipment	
3) Study programme (undergraduate, graduate): Chemical Engineering (graduate)		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
 outcomes): 1. describe fundamental concepts in air protection 2. classify sources of air pollution 3. evaluate air quality management and analyze the causes and effects of air pollution 4. recognize major legislation governing air pollution 5. explain the mechanisms of pollutants formation 6. classify various air pollution control methods and the costs to implement those controls 7. analyze a methodology to determine the performance of air pollution control techniques 8. describe design of control technologies 9. apply the appropriate numerical and/or analytical methods for solving practical environmetal problems 10. recommend control strategies for specific air pollution problems 	 the ability to understand and apply the fundamentals of mathematics, the basic sciences, engineering sciences and engineering design methods the ability to design a system or process to meet desired needs within realistic constraints, such as economics, environmental, social, ethical, health and safety, manufacturability and sustainability the ability to understand and apply specific chemical engineering skills such as mass and energy balances, single and multi- component thermodynamics, fluid mechanics, heat and mass transfer operations, process economics, process design, process safety and process design the ability to identify, define and solve complex engineering problems with relevant methodologies and available program packages 	

Teaching unit	Learning outcomes	Evaluation criteria
Sources of air pollution, defining basic terms, classifications	 - analyze the composition and structure of the atmosphere - define basic concepts (pollution, pollutant, contaminant, emission, aerosols, etc.). - explain the greenhouse effect 	 explain the consequences of the air pollution describe the impact of pollution on human health recognize the effects of global air pollution explain the basic principles of

	 explain the history of air pollution analyze classification of pollutants according to their physical state describe the mechanisms of pollutants formation and formation of gaseous pollutants (gases and vapors) 	the air pollution monitoring - identify current research questions in the field of air quality engineering
Approach to solving problems in air protection	 explain the different approaches of solving problems in air protection compare the primary and secondary processes used to protect the air analyze the industrial plants with regard to sources of pollution 	 classify end-of-pipe processes in the air protection give examples of application of the process-integrated approach to the environmental protection give a schematic representation of an industrial plant with an indication of possible sources of emissions into the environment discuss the basic types of emissions from industrial plants
Removal of particulates from waste gases	 classify methods for removing particulates from the stationary sources consider the advantages and disadvantages of mechanical and physical methods of separation explain the factors that influence the selection of the appropriate process define the characteristic dimensions that describe the motion of the solid particles in the fluids describe particulate control equipments explain the wet process for particulates removal 	 compare wet and dry processes for particulates removal describe operation of dry process give examples of different designs of devices based on wet processes explain the influence of process parameters on the removal of the suspended particles calculate the efficiency of cyclone summarize the effectiveness of different systems for dust removal with respect to the particle size

Removal of gaseous pollutants (gases and vapors)	 consider the similarities and differences between the gases and vapors compare absorption vs. adsorption explain the different performance absorber analyze the working principle of the adsorber describe condensation and membrane separation processes and chemical procedures for the treatment of waste gases explain the basic principles of the biological treatment of waste gases 	 comparable scrubbing and stripping specify the application of the absorption process in the air protection indicate the parameters that affect the efficiency of the adsorber compare different types of condensers consider differences between thermal and catalytic processes compare recuperative and regenerative combustion devices
Treatment of exhaust gases from the mobile sources	 classify methods for the treatment of exhaust gases from mobile sources explain the working principle of the three way catalysts specify the basic features of monolithic catalysts and catalytic converters describe treatment of exhaust gases from diesel engines suspension reactors 	- explain the role of monolithic structures in the field of the air protection

1) Course teachers: Associate. prof. Ana lončarić Božić, PhD Assistant prof. Hrvoje Kušić, PhD		
2) Name of the course: Environmental engineering		
3) Study programme: graduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
 Understand and adopt the concept of sustainable development and the role of chemical engineers in environmental protection Adopt the basic principles and tools for preventive approach in environmental protection Correlate the sources of environmental pollution with the corresponding mitigation and minimisation measures Understand, adopt and apply the basic principles of green chemistry and green engineering in the process and product development Quantify the environmental impact of different chemical processes Understand the role of catalysis in development and application of sustainable processes and products Be acquainted with the key requirements of national Environmental protection law and IPPC directive Correlate sources of air, soil and water pollution and transportation paths in environment Be acquainted with management tools in environmental engineering 	 Apply the fundamental knowledge in chemical engineering in identifying and solving the environmental problems Understand the role of chemical engineering in proactive approach within the field of environmental engineering Acquire knowledge and competences required for further professional development within the field of environmental engineering 	

7) Teaching units with the corresponding learning outcomes and evaluation criteria		
Teaching unit	Learning outcomes	Evaluation criteria

8		
1. Introduction to	-adopt the main terms in	- explain the main terms in
Environmental engineering;	environmental engineering	the field of environmental
sustainable development and	and be acquainted with the	protection and environmental

preventive approach in	key requirements of national	engineering
environmental protection	Environmental protection	- identify the sources and
-	law	transportation paths of
	- understand the concept of	pollutants in studied
	sustainable development and	environmental systems
	the role of chemical	- apply the conservation laws
	engineers in environmental	for monitoring the pollutants
	protection	in environment
	- adopt the basic principles	-explain the waste
	and tools for preventive	management hierarchy
	approach in environmental	through the methodology of
	protection	cleaner production
	- understand the sources of	- correlate the sources of
	correlate them with the	chemical processes with the
	corresponding mitigation and	corresponding preventive
	minimisation measures	measures based on given
		examples
2. Role of green chemistry	- define terms "green	-apply the principles of green
and green engineering in	chemistry" and "green	chemistry and green
sustainable development	engineering"	engineering in process and
	-understand and apply adopt	product development based
	basic principles of "green	on given examples
	chemistry" and "green	- calculate E-factors and
	engineering "in process and	atom economy in order to
	product development	quantify environmental
	-quantify the environmental	soloct loss harmful row
	atom economy and	materials and solvents in
	calculation of F-factor	process development
	- apply the green indicator"	- explain the role of catalyst
	in life cycle analysis of	in design of alternative
	products.	reaction path considering
	- understand the importance	savings in materials, energy
	of catalysis in development	and minimisation of
	of sustainable processes	environmental impact
	1 , 1,1 •	
3. Analysis and control of	- understand the main	- identify the correlation
environmental pollution	sources and transportation	anthronogenic activities and
	paties of an, son and water	the presence of specific
	- be acquainted with	nollutants in environment
	management tools in	- overview the main features
	environmental engineering u	of environmental
	- be acquainted with the main	management systems (EMS
	features of IPPC directive	and EMAS) and

management tools in environmental engineering poznavati glavne značajke IPPC direktive - select and propose appropriate measures for	environmental impact assessment (EIA and SEA) - explain the term "Best available technologies" and their role in IPPC directive - specify and describe the
minimization and control of environmental pollution	main sources and mechanisms of ozone depletion - propose the appropriate water treatment method based on given water
	characteristics - explain the processes of soil remediation and based on given examples

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Helena Otmačić Ćurković		
2) Name of the course: Structural materials – corrosion and protection		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course:		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): Student will be able to:	1. the ability to understand and apply the fundamentals of the basic sciences,	
1. apply basic knowledge of electrochemistry and chemical engineering to interpret corrosion processes	2. the ability to identify, define and solve	
2. recognize different types of corrosion, their causes and consequences	methodologies and available program packages;	
3 identify key chemical and physical properties of various structural materials	3. the ability to use the techniques, skills and modern engineering tools necessary for	
4. discus new trends in development of structural materials	engineering practice;	
5. explain the principles of different corrosion protection techniques		
6. estimate which corrosion protection technique is the most appropriate for a given corrosion issue		

Teaching unit	Learning outcomes	Evaluation criteria
1.Fundamentals of corrosion processes	 explain the causes of corrosion explain the mechanism of chemical and electrochemical corrosion processes analyse possibility of corrosion occurrence in dependence of given 	 draw corrosion cell determine possibility of corrosion reaction by using Pourbaix diagram discriminate anodic polarization curves of passivating and non passivating metals

thermodynamic parameters -explain metal passivity	- perform corrosion potential measurement
-explain corrosion mechanism in given environment	-student should identify causes of corrosion in given medium
-explain difference between general and localized corrosion	-write corrosion reactions for given situation
-explain the mechanism of initiation and propagation of different types of localized corrosion	
 -apply several experimental methods to determine corrosion rate -evaluate which experimental method or combination of methods are the most appropriate for examination of given corrosion system 	 -should explain the principles of various experimental methods for corrosion rate determination, in which conditions each one of them can be applied and what kind of information can be gained - in laboratory determine corrosion rate by electrochemical, gravimetric and volumetric methods
- students will be able to explain the basic design principles related to corrosion protection	- give an example of bad and good design solution from the corrosion protection point of view
 explain the basics principles of electrochemical corrosion protection methods explain the basics principles corrosion protection by corrosion inhibitors explain the basics principles of corrosion protection by organic, inorganic and metallic coatings explain how each corrosion 	 -draw scheme of cathodic protection system - define corrosion inhibitors and explain how they decrease corrosion rate - explain different procedures of coating application
	thermodynamic parameters -explain metal passivity -explain corrosion mechanism in given environment -explain difference between general and localized corrosion -explain the mechanism of initiation and propagation of different types of localized corrosion -apply several experimental methods to determine corrosion rate -evaluate which experimental method or combination of methods are the most appropriate for examination of given corrosion system - students will be able to explain the basic design principles related to corrosion protection - explain the basics principles of electrochemical corrosion protection methods - explain the basics principles corrosion protection by corrosion inhibitors - explain the basics principles of corrosion protection by organic, inorganic and metallic coatings -explain how each corrosion

	protection method can be applied	
	- conclude which corrosion protection method is suitable for given corrosion issue	
5. Physical properties of metallic materials	 -explain the most important physical properties of structural materials - explain how they can be determined 	- explain given physical property and how it can be measured
6. Important structural materials	- describe the most important chemical and physical properties, as well as the common application areas of the most important metallic, inorganic and organic structural materials	- describe the most important chemical and physical properties, as well as the common application areas of given structural material
7. New structural materials	 -explain the basic principles of composite, smart and biomimetic materials -discus the key issues related to the use of nanomaterials 	 -explain the basic principles of composite, smart and biomimetic materials -explain advantages and disadvantages of nanomaterials

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof.dr.sc. Đurđa Vasić-Rački		
2) Name of the course: Biochemical Engineering		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course:		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1 Mastering the basics of biochemical engineering.	1. Application of the methodology of chemical engineering in the development of bioprocesses.	
. Understand the specificities of biological naterial. 2. Application of a computer program, and computer technology in general in the		
3. Understand the theory of biocatalysis	modeling and simulation of bioprocesses	
4. Adopt advantages and disadvantages of biocatalysts		
5. Mastering engineering bioprocess development strategy.		
6. Adopt fundamentals of the separation process.		
7 Understand the specificities of bioseparation process.		

Teaching unit	Learning outcomes	Evaluation criteria
1.1. Introduction (definition and scope of biochemical engineering, chemical and biochemical engineering, - similarities, differences and particularities).	 Understand the definition and distinguish areas Biochemical Engineering Define the similarities and differences of chemical and biochemical engineering To define the peculiarities of biochemical engineering 	 Explain the definition, and areas in biochemical engineering Explain the similarities and differences in chemical and biochemical engineering Explain the peculiarities of biochemical engineering
2 Basic concepts: bioprocess,	- Individually define basic concepts in biochemical	Differentiation of bioprocesses,

biotransfromation, fermentation, biosynthesis, cell metabolism	engineering-	 biotransfromacija, fermentation, biosynthesis and cell metabolism Distinction was and chemical processes; biotransformation and chemical reactions
3. Biocatalysis: Theory.	 Define Biocatalysis Define and enumerate the set theory of biocatalysis Define the biocatalyst 	 Explain the operation of the biocatalyst and the theory of biocatalysis Enumerate and differentiate so far developed theories about the activities of the biocatalyst Explain the concept of active center
4. Enzyme kinetics: Kinetic Model	 Define the concept of initial rate of the enzymatic reaction Define the Michaelis- Menten kinetics 	 Explain the concept of the initial rate of the enzymatic reaction Perform the Michaelis-Menten kinetic expression, which is based on the mechanism of enzymatic reactions
5. Biocatalysts: Forms, Production	 Define the shape of the biocatalyst, and their advantages and disadvantages Define and enumerate the ways of obtaining biocatalysts 	 Explain the forms of biocatalysts Explain methods for the preparation of biocatalysts Explain the advantages and disadvantages of biocatalysts
6. Heterogeneous biocatalysts: Methods of immobilization.	 Define heterogeneous biocatalysts Define different methods for the preparation of heterogeneous biocatalysts 	 Explain what are heterogeneous biocatalysts Explain the method of preparation of heterogeneous biocatalysts
7. Kinetics of heterogeneous biocatalysts	 Define what is the rate of enzymatic reactions catalyzed by heterogeneous biocatalyst Define a mathematical 	- Explain what is the rate of enzymatic reactions catalyzed by heterogeneous biocatalyst

	model that describes the rate	
	of heterogeneous	
	biocatalytic reactions	
	- Define the bioreactor and	- Explain the differences
8. Bioreactors	differences with a chemical	bioreactor and a chemical
	reactor	reactor
	- Define the enzyme reactor.	- Explain the differences
	a fermenter and a bioreactor	enzyme reactors fermenters
	- Define the types of	and bioreactors
	bioreactors (e.g. Chemostat)	- Explain the specific types of
	used in biotehnology	bioreactors
9 Enzyme membrane reactor	- Define and describe the	- Describe enzyme membrane
7. Enzyme memorane reactor	enzyme membrane reactor	reactors
	- Define the membrane	- Explain when this reactor is
	reactor	used
		- Explain for what type of
		enzymatic reaction is suitable
10. Engineering requirements	- Define the engineering	- Explain the engineering
in the design of bioreactors	requirements in the design of	requirements: mixing,
	bioreactors	aeration
	- Define the overall volume	- Explain the transfer of gas
	coefficient of oxygen transfer	to liquid
	- Define criteria for selection	- Explain the overall volume
	of bioreactors	coefficient of oxygen transfer
		- Explain criteria for the
		selection of reactors: type of
		the reaction medium, the
		shape of the biocatalyst, type
		of kinetics
11. Processes separation	- Define Downstream	- Explain Downstream
(Down Stream Processing):	processing	processing
The processes of separation	- Define the processes of	- Explain the processes of
solid, liquid	separation of solid, liquid	separation of solid, liquid
· •		suitable for bioproducts
12. Separation process: the	- Define the process of	- Explain the process of
process of breaking cells	breaking up cells	breaking up cells
wall; Concentration processes	- Define the processes of	- Explain the suitable
of bioproducts	concentration of bioproducts	processes for concentration
-		of bioproducts
13. Industrial	- Define industrial interesting	- Explain the differences of
biotransformation: Review	biotransformations	some industrial chemical
	- Define the differences of	processes and bioprocesses
	some industrial chemical	
	processes and bioprocesses	

1) Course teacher: Prof. Sanja Papić, PhD			
2) Name of the course: Technological processes of organic industry			
3) Study programme (undergraduate, graduate): graduate			
4) Status of the course: regular			
 4) Status of the course: regular 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): Describe the features and recognize the role of the organic chemical industry. List important products and state their application. Classify the processes of the organic chemical industry. For each basic process (sulfonation, nitration amination by reduction, oxidation alkylation, hydrolysis, halogenation select the reaction agents, explain the influence of process parameters and reaction mechanisms. Apply knowledge of reaction engineering and technical thermodynamics and explain the process kinetics and thermodynamics. 3. Describe the industrial processes for the production of selected, important intermediates of organic chemical industry. Explain the flow diagrams. 4. Create a flow diagram for the production of a given intermediate 	 6) Learning outcomes at the level of the study programme: Ability to apply basic knowledge of the natural sciences in identifying and describing simple engineering problems. Ability to apply scientific methods in the analysis and modelling of processes and product design. Ability to understand the importance and the role of engineers in society and the necessity for the highest ethical standards in their professional work. Ability to identify, define and solve simple engineering problems by applying the appropriate methodology and available software packages. 		
 Give an example of process improvement in terms of bette selectivity and environmenta acceptability. Judge, evaluate and argue the environmental acceptability of processes of organic chemica industry. 	s r 1 1 y 1		

FORM 2

Teaching unit	Learning outcomes	Evaluation criteria
1. Features and role of the organic chemical industry	-describe the features and recognize the role of the organic chemical industry -list the important products and state their application.	 -explain the features and the role of the organic chemical industry in a modern economy -to know the important products and their application. -list the basic processes
2.Basic processes of organic chemical industry	-classify the processes of the organic chemical industry -for each basic process (sulfonation, nitration, amination by reduction, oxidation, alkylation, hydrolysis, halogenation) select the reaction agents, explain the influence of process parameters and reaction mechanisms -apply knowledge of reaction engineering and technical thermodynamics and explain the process kinetics and thermodynamics	For each basic process to know: - reaction agents -mechanisms and kinetics of chemical reactions - thermodynamic features - explain the influence of process parameters -important products and their application
3)Selected industrial processes for the production of important intermediates of organic chemical industry	-describe the industrial processes for the production of selected, important intermediates of organic chemical industry -explain the flow diagrams	 describe the industrial processes for the production of selected intermediates explain the process flow diagrams

	-create a flow diagram for the production of a given intermediate	- know the application of certain intermediates in the production of important products of organic chemical industry
4) Examples of environmentally friendly processes	-give an example of process improvement in terms of better selectivity and environmental acceptability -judge and evaluate the environmental acceptability of processes of organic chemical industry	-to give an example of improving the process of organic chemical industry to achieve better selectivity and environmental acceptability

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Assoc. Prof. Elvira Vidović, PhD		
2) Name of the course: Petrochemical Technology		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course: required		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
 outcomes): 1. to distinguish the procedure of conversion of fossil and renewable raw materials into a spectrum of chemicals and materials 2. to relate the previous knowledge (organic, physical chemistry) and others (thermodynamics, transfer phenomena) with the processes of petrochemical industry 3. to differentiate the technological solutions characteristic for petrochemical industry 	 the ability to design a system or process to meet desired needs within realistic constraints, such as economics, environmental, social, ethical, health and safety, manufacturability and sustainability the ability to understand social importance and the role of engineering as well as the importance of the highest ethical standards in professional work 	
4. to outline the schemes of main processes in petrochemical industry.		

Teaching unit	Learning outcomes	Evaluation criteria
1. Natural gas – composition and exploitation; treatment processes	- to define natural gas regarding the composition and physico-chemical properties	- to identify natural gas regarding the composition and physico-chemical properties
2. Processes of production and processing of aromatic hydrocarbons	 to analyze the technological processes of separation of aromatic hydrocarbons (BTX) mixtures into single components 	- to discriminate the starting point of processes of separation of aromatic hydrocarbons

1) Course teacher: Prof. Sanja Lučić Blagojević, Ph.D.		
2) Name of the course: Polymer nanocomposiues		
3) Study programme (undergraduate, graduate): Graduate programme Material science and engineering		
4) Status of the course: elective		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. To relate knowledge of polymer materials engineering with surface and interfaces	1. Understanding scientific principles important for chemistry and materials engineering.	
engineering in multiphase polymer systems.2. To apply knowledge of the structure, properties, production of polymer nanocomposites.	2. Understanding of the four basic elements of chemistry and engineering materials: structure, properties, production and use of materials.	
3. To acquire knowledge on the application of polymer nanocomposites as advanced	3. Deepening of knowledge about advanced polymer materials.	
materials. 4. To acquire knowledge on selection	4. Ability to apply techniques and methods of characterization of materials.	
techniques and methods for the characterization of multiphase systems and quality control of the product.	5. Ability of effective work and the presentation of the work in written and oral form.	
5. To analyze and synthesize scientific knowledge about the structure, preparation, properties and application of polymer nanocomposites on the experimental example and present it in oral form.		

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1. Differences between micro and nanocomposites	- to apply knowledge of surfaces and interfaces engineering in polymer	- explain the theory of adhesion (adsorption and chemisorption) at the

	composite systems - to analyze the differences in morphology and properties between micro and nanocomposites	interface of polymer / filler - explain and relate the impact of the filler particles size on the interface size, morphology and fraction of polymer in interphase layer
2. Nanofillers (carbon nanotubes, layered nanofillers, equi-axed nanofillers, quantum dots)	 to analyze and apply the role of chemistry and materials engineering in the synthesis of nanofillers to choose nanofiller for a particular purpose depending on its structure and morphology to understand the principles of chemical and physical surface modification of nanofiller 	 describe the processes of synthesis of particular nano- filler explain the relationship between structure and properties of nanofiller explain surface modification of the nanofillers and define its advantages and disadvantages
3. Preparation of polymer nanocomposites	 to identify the optimal parameters of the preparation processes to apply knowledge of thermodynamics in nanocomposite preparation processes to link knowledge about polymer materials and processing 	 explain the methodology of specific preparation process and specify their advantages and disadvantages explain the role of entropy and enthalpy contributions in processes of nanocomposites preparation identify key factors (structure of polymers and fillers, process parameters) that affect the morphology and structure of nanocomposites
	 to analyze the factors that affect the achievement of the advanced properties to analyze and apply the mechanisms of nanofiller influence on predicting the properties of the polymeric nanocomposites 	 define the impact of the fillers characteristics and surface modifications on the properties of polymer nanocomposites explain the mechanisms of filler influence on the properties of nanocomposites (mechanical, thermal.

	electrical, optical,
	dimensional stability, gas
	permeability)

1) Course teachers: Prof. Mirela Leskovac, PhD 2) Name of the course: Additives for polymer materials and products 3) Study programme (undergraduate, graduate): graduate **Chemical Engineering** 4) Status of the course: optional 6) Learning outcomes at the level of the 5) Expected learning outcomes at the level of the course (4-10 learning study programme: outcomes): 1. Explain, connect and apply basic 1. Acquire the basic knowledge in the field of thermodynamic principles to select the applications of various additives in the appropriate additives for polymeric materials and polymer processing to make the polymers products. easy to process and for changing the properties of the final product. 2. Integrate knowledge and apply appropriate methodology to different types of additives to 2. Analyze and conclude about the chemical, obtain polymeric materials with improved structural, performance additives for performance. polymeric materials in relation to the application and final product. 3. Manage and plan production processes and modification of polymer materials and products 3. Acquire skills in the work in the laboratory and demonstrate skills in the laboratory. in the field of the analysis methods and applications ways of the chemical compounds 4. Ability of independent or team work in the in the plastics processing. laboratory and the presentation of a work in written and oral form. 4. Use various analysis methods to assess the properties and quality of the final product. 5. Identify and resolve complex problems in the field of polymer engineering materials.

Teaching unit	Learning outcomes	Evaluation criteria
1. Polymer additives, their role and classification.	- Acquire knowledge about different important polymer additives and explain principles of their action, properties and application as well ecological and economical impacts.	- Specify and classify basic types of additives and explain the role of used additives for polymers.

2. Modifiers of physical properties; action mechanism, classification, properties and application.	- Acquire insight to defining appropriate modifiers of polymer physical properties.	- Measure and analyze the results of determining the surface properties of the additive using the pendant drop method
3. Additives that have a protecting effect against polymer aging and degradation; action mechanism, classification, properties and application.	- Acquire insight to defining appropriate additives that have a protecting effect against polymer aging and degradation.	 Analyse the correlation between properties and applications of chosen additives. Identify and analyse the influence of additives on the
4. Effects of chemically and physically active media	- Acquire insight to defining	thermal stability of polymer materials.
effect of ionizing radiations, mechanical and thermal degradation.	media.	- Evaluate the effect of additives on the flammability properties - Limited oxygen index (LOI).
5. Methods used to incorporate additives into polymer matrices. Ecological aspects of application of additives for polymer materials and their products. Technical trends and new	- Explain and propose appropriate methods to incorporate additives into polymer matrices.	- Identify and analyze the influence of additives on the oxidative stability of polymer materials; determination of oxidation induction time, OIT and oxidation induction temperature, OIT*.
market requests.		- Explain the influence of plasticizers on the polymer material properties and to evaluate the plasticizers efficiency as well the influence on the polymer surface properties (study of plasticizers migration).
		- Interpret obtained results and present the results in laboratory report.

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Zlata Hrnjak-Murgić, PhD		
Prof. Emi Govorčin Bajsić, PhD		
Prof. Mirela Leskovac, PhD		
2) Name of the course: Characterization and Identification of Products		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course: optional		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):6) Learning outcomes at the level of the study programme:		
1. to adopted theoretical knowledge related to methods of instrumental analysis and principles of instruments and procedural knowledge	1. Knowledge and understanding of four major elements of materials science and engineering: structure, properties, processing, and performance of materials.	
2. acquisition of the ability to understand the methods of processing and quality control of polymer materials	2. Ability to select and apply appropriate analytical methods and equipment for materials production and performance control and to analyze the results critically.	
3. ability to work independently in chemical and physical laboratory	3. Ability to create solutions and independently	
4. ability of self presentation and interpretation of laboratory results in written and oral form	solve problems (including the identification and formulation of the problem) in materials science and engineering	

Teaching unit	Learning outcomes	Evaluation criteria
1. Introduction to methods for monitoring of quality and productions of polymer materials	 to indicate the basics of polymer characterization to define properties of polymers: chemical, physical, mechanical and their importance in use to adopted the knowledge regarding the molecular weight (GPC method) 	 to distinguish the various properties of polymers and importance for the application to explain the determination of molecular masses of polymers and connect the results with polymer structure and properties

2. Spectroscopic methods in material characterization	 to define basic principles of spectroscopic methods and importance in use to define application of spectroscopic methods: UV, FTIR, NMR 	 to explain basic principle work of spectroscopic methods, in general to explain principle work of FTIR spectroscopy to explain principle work of NMR and UV spectroscopy methods
3. Explain the behaviour of materials in heat Characterization and selection of materials for application	- to gained knowledge about work principle of thermal instrumental techniques for characterization and identification of materials	- to characterize polymer materials by DSC, DMA and TGA techniques and explaine obtained results
4. Microscopy techniques in material characterization	- to acquire knowledge about theoretical basis of various microscopic techniques and their application in material characterization	- to explaine and propose appropriate microscopic techniques as well analyse microscope images of different materials obtained by different microscopy techniques
5. Surface characterization of materials	 to acquire insight to define the surface and interface phenomena to apply instrumental techniques for determining the surface free energy to evaluate the surface free energy 	 to determine surface free energy of different materials by contact angle measurement to apply appropriate model for SFE calculation as well explaine and apply obtained results
6 . Mechanical properties of materials - basic definitions - elastic and plastic deformation - viscoelasticity	- understanding of relationship between microstructure and mechanical properties (metals, ceramics, polymers, composites)	- to determine and explaine mechanical properties of different materials obtained by tensile, stress relaxation and cyclic testing measurements

1) Course teacher: Prof. Irena Škorić, Ph.D. Prof. Vesna Volovšek, Ph.D.		
2) Name of the course: Molecular spectroscopy		
3) Study programme (undergraduate, graduate): Chemical Engineering (graduate)		
4) Status of the course: optional		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. to be able to explain the physical basis of	1. to apply spectroscopic methods in analysis of the given substrate;	
2. to know how to choose appropriate spectroscopic method;	 to use spectroscopic methods in monitoring of an reaction process; to apply the acquired knowledge in 	
3. to be able to extract relevant data from spectra;4. to know how to correlate obtained data:	research projects;4. the ability of selection of appropriate spectroscopic methods in monitoring of use	
 5. to combine spectroscopic methods 6. to develop a logical approach to solving with recommendation of an acceptable structure for the given spectroscopic tasks; 	of different materials and in a critical data analysis;	

Teaching unit	Learning outcomes	Evaluation criteria
1.Physical basis of molecular spectroscopy	 to determine the kind of interaction of electromagnetic radiation and mater for each of the spectroscopic methods to explain the ways of detecting signals 	 to determine the suitable spectroscopic method to determine the number of suspected spectroscopic bands, their shape, half width and intensity
2. Different spectroscopic methods (IR, UV/VIS, MS, NMR)	 -to define the wave region - to recognize the functional groups and chromophores in 	 -to recognize and interpret spectra of simple molecules; -to determine the structure of the compound on the basis of

IR and UV/VIS spectra;	the given spectra
- to determine the molecular ion and find characteristic fragments in the MS spectra;	
-to assign the signals in ¹ H and ¹³ C spectra to appropriate structural units;	
- to be able to suggest the structure of the compound on the basis of spectral data;	

1) Course teachers: Associate. prof. Ana Lončarić Božić PhD		
2) Name of the course: Environmental management systems		
3) Study programme: graduate KI		
4) Status of the course: elective		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):6) Learning outcomes at the level of the study programme:		
 the ability to apply the methodology of Environmental management systems based on Deming's cycle of continual improvement the ability to analyse processes, activities and corresponding environmental aspects and 	1. the ability to apply basics of professional protection of local and global environment, environmental development and control, and environmental legislation ;	
impacts 3.the ability to propose preventive measure for potential environmental problems related	2. the ability to perform critical analysis of environmental problems.	
to different processes and activities 4. the ability to recognise and response to the specific environmental issues related to inherent risks of chemical industry	3. the ability to understand and solve environmental issues using environmental management tools	

7) Teaching units with the corresponding learning outcomes and evaluation criteria		
Teaching unit	Learning outcomes	Evaluation criteria
1. Basic principles of sustainable development; Introduction to Environmental management system (EMS) based on Demig's cycle; ISO 14001	 adopt the preventive approach in environmental protection and management understand the role of Demings' cycle in continual improvement understand the significance of the main elements and their correlation within EMS understand the requirements of ISO 14001 analyse processes, activities and corresponding environmental aspects and impacts 	 describe and explain the basic principles of preventive approach and EMS as a sustainable development tool specify the elements of Demings' cycle and describe the concept of continual improvement explain the requirements for environmental policy according to ISO 14001 set "smart "EMS objectives based on given examples define environmental aspects and impacts based on activities described in given

_		
2. Cleaner production, Life Cycle Analysis (LCA) and Responsible care	 - understand and adopt the methodology of Cleaner production, Life Cycle Analysis (LCA) and Responsible care - correlate sources of waste in Cleaner production with corresponsive preventive measures 	case study - distinguish types of EMS documentation -describe and explain the basic elements of Cleaner production, Life Cycle Analysis (LCA) and Responsible care methodology -classify types of waste sources in Cleaner production -specify and explain
	- understand the importance and main characteristics of programme Responsible care	applicability of preventive measures in Cleaner
	and main characteristics of programme Responsible care in chemical industry	measures in Cleaner production -describe inherent
		risks in chemical industry
		-explain principles of Responsible care their correlation with the EMS methodology

1) Course teacher: Prof. Zlata Hrnjak-Murgić, PhD		
2) Name of the course: Degradation and Modification of Polymers		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course: elective		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
outcomes): 1. to understand and analyze the basic knowledge related to the processes of degradation of polymeric materials	1. application of scientific principles, which include basic principles of chemistry and chemical engineering, on materials, their structure and properties	
2. acquisition of the ability to understand mechanism of different types of polymer degradation: mechanical, photooxidative degradation, thermal degradation, biodegradation	2. the ability to create solutions and independently solve problems (including the identification and formulation of the problem) in materials science and engineering;	
 acquisition of the ability to understand the methods and processes of polymer modification, chemical and physical ability of self presentation and interpretation of laboratory results in written and oral form 	3. skills necessary for running chemical and physical laboratories, selection and preparation of adequate laboratory equipment and organization of laboratory work according to standards; 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Introduction to degradation processes, mechanisms of degradation	 acquisition of knowledge about degradation processes, to indicate the type of degradation: mechanical, photooxidative degradation, thermal degradation, biodegradation to define the mechanism of different degradation reactions 	 -to explain the basic principle of polymer degradation processes -to distinguish different types of polymer degradation reactions
2. Thermal and	- understanding of	-to recognize the effect of – -

photooxidation, oxygen and ozone activity, mechanical degradation.	temperature and oxygen effect on polymer materials; depolymerization reactions and their influence to polymer chain structure and molecular weight of polymers - to explain the effect of mechanical stresses on the properties of polymer materials	 to explain the influence of thermal and mechanical degradation and photodegradation on the properties of polymer materials to define the various structure changes in polymer materials caused by degradation processes
3. Degradation of biopolymers -biodegradation.	 to explain the term biopolymers and biodegradation. to indicate the effect of biodegradation on the polymer materials properties. 	 to define and explain different types of biopolymers and biodegradable polymers to define the products of polymers biodegradation.
4. Modifications of polymers, Multifunctional systems - compatibility.	 to indicate the basic types of polymer modifications: polymer blends, polymer composites to define the polymer materials compatibility 	 -to define the types of polymer modifications -to explain the basic principles of polymer materials compatibility, polymer blends, polymer composites
5. Thermodynamics of multifunctional polymer systems	- to acquire the knowledge about thermodynamics of multifunctional polymer systems	-to define the basic equations for thermodynamics in polymer multifunctional systems
6. Chemical and physical modifications of polymers.	- acquisition of knowledge about the basic methods for chemical modifications of polymers: graft polymerization, copolymerization; physical modifications of polymers: homogenization in the melt and in the solution	 -to define the basic methods for chemical and physical modifications of polymers - to explain the influence of polymer modification on the materials properties

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: prof.dr.sc. Emi Govorčin Basjić		
2) Name of the course: Polymer engineering materials		
3) Study programme (graduate): Chemical Engineering (1 st and 2 nd year) ; Applied Chemistry (1 st and 2 nd year)		
4) Status of the course:Elective		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
 outcomes): 1. Distinguish molecular structure and super molecular structure of polymers and static structure and dynamic structure of polymers 2. Distinguish dynamic structure and properties of thermoplasts, duromers and elastomers at oscillating strain 	1. Recognise the specificities in behaviour of viscoelastic materials in regard to elastic solid and viscous liquid	
	 Ability to analyse the durability of materials in production processes and in application Ability to apply gained knowledge from 	
3. Explain different types of degradation and process of flammability	structure and properties of polymers for production of new polymer materials	
4. Define of structure and properties of multiphase polymer systems	4. Ability to select and application of corresponding process in processing of	
5.Choose the methods of processing of polymer materials into a finished product	polymer materials	

Teaching unit	Learning outcomes	Evaluation criteria
1. Static and dynamic structure of polymers	Distinguish the static and dynamic structure of polymers	
2. Deformation states of polymers	Distinguish the dynamic structure and properties of polymers in heating process	Report of laboratory exercise on DSC and MDSC instruments
3. Viscoelasticity	Distinguish the dynamic structure and properties of polymers at oscillating strain	Report of laboratory exercise on DMA instrument and rotational viscometer
4. Stability of polymer	Explain the process of	Report of laboratory exercise

materials	degradation and ageing of polymer materials	of photooxidative degradation of polymer materials
5. Polymer blends	Ability to define correlations of composition, structure and properties of multiphase polymer systems	Analysis of morphological structure of polymer blends by DSC, DMA, TGA i SEM technique
		Exercise and report
6. Procedures of polymer materials processing	Distinguish the basic procedures of polymer materials processing	
7. Extrusion	Analyse extrusion as a most common procedure in polymer processing	Report of laboratory exercise of preparation of polymer materials by extrusion
8. Moulding	Analyse of the moulding process of polymer materials	Report of laboratory exercise of moulding of polymer materials

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Zlata Hrnjak-Murgić, PhD		
2) Name of the course: Cellulose and Paper Technology		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course: elective		
 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 1. acquisition of knowledge related to manufacturing cellulose from wood 2. understanding and basic knowledge regarding the manufacturing of paper 3. adoption of knowledge of various technology and equipment for paper manufacturing 	 6) Learning outcomes at the level of the study programme: 1. the ability to design a system or process to meet desired needs within realistic constraints, such as economics, environmental, health and safety, manufacturability and sustainability 2. the ability to understand and apply specific chemical engineering skills such as mass and energy balances, heat and mass transfer 	
 4. adoption of knowledge of production of cardboard and corrugated cardboard 5. acquisition of knowledge for the analysis of quality control and production 	 operations, process economics, process design, process safety and process design 3. understanding of engineering processes and their design 4. recognition and finding solutions to problems regarding environmental protection 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Manufacturing cellulose from wood	 to define type of wood and wood fibres to identify chemistry of wood; cellulose, hemicellulose, lignin to acquire the knowledge about the methods for quality control 	 -to explain technology of cellulose separation from wood - to distinguish the main components of wood and their chemistry -to distinguish the methods for quality control
2. Manufacturing cellulose from wood	-to define technology of wood pulp -to define technology of semi	-to explain and understand technology of wood pulp production

	cellulose - neutral sulphite process, cold alkali process.	-to explain and understand technology of semi cellulose
3. Manufacturing cellulose from wood	 -to define technology of sulphite pulp-acid process. -to define technology of sulphate pulp-alkali process 	 -to explain and understand technology of sulphite pulp- acid process -to explain and understand technology of sulphate pulp- alkali process
4. Regeneration of chemicals	 to indicate the regeneration of chemicals from white and black liquor to define the significance and negative impact on environment 	 -to distinguish processes for chemical recovery from the process mixture - to explain the negative impact on environment
5. Manufacturing of paper	 -to define technology of paper production, preparation of mixture: fillers, binders, colours - to define preparation of paper pulp - to indicate paper – machine production - to define technology of cardboard and corrugated cardboard preparation 	 -to distinguish processes for paper production -to explain paper pulp and machinery for production -to distinguish processes for cardboard preparation
6. Quality control of processes and product	-to define the methods for analysis control and monitoring process of the paper production	-to distinguish necessary methods for monitoring the production and quality

1) Course teacher: Prof. Bruno Zelić, PhD			
2) Name of the course: Bioseparation Processes			
3) Study programme (undergraduate, graduate): Graduate			
4) Status of the course: Elective			
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:		
outcomes): 1. to apply basic principles of mass and energy conservation on physical, chemical	1. to apply the fundamentals of mathematics, the basic sciences, engineering sciences and engineering design methods;		
and biochemical processes2. to define process space, system borders, and inlet and outlet process parameters	2. to design a system or process to meet desired needs within realistic constraints, such as economics, environmental, social,		
 3. to differentiate steady-state and non steady-state, closed and open process 4. to develop mass and energy balances of case studies 5. to construct process schemes of biochemical industrial processes 6. to differentiate between bioseparation processes needed for separation, isolation and purification of biochemicals 	 ethical, health and safety, manufacturability and sustainability; 3. to apply specific chemical engineering skills such as mass and energy balances, single and multi-component thermodynamics, fluid mechanics, heat and mass transfer operations, process economics, process design, process safety and process design; 4. to apply and optimize chemical and related industrial processes 5. to identify, define and solve complex engineering problems with relevant methodologies and available program packages; 		
	 6. to chose and apply appropriate - mathematical/numerical methods for problem solving; 7. to use the techniques, skills and modern engineering tools necessary for engineering practice 		

Teaching unit	Learning outcomes	Evaluation criteria
---------------	-------------------	---------------------

	 to apply basic principles of mass and energy conservation on physical, chemical and biochemical processes to define process space, system borders, and inlet and outlet process parameters 	 construct process scheme for case study and identify inlet and outlet process streams and parameters determine the base for calculation and standard conditions
1. Bioseparation processes	 to differentiate steady-state and non steady-state, closed and open process to develop mass and energy balances of case studies to construct process schemes of biochemical industrial processes 	 seek literature data needed for calculation of mass and energy balances apply the principle of mass and energy conservation and develop mass and energy balances for case study
2. Process integration	- to differentiate between bioseparation processes needed for separation, isolation and purification of biochemicals	- develop integrated bioseparation process for separation, isolation, and purification of target biochemical

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Mandić Zoran, PhD, associate professor			
2) Name of the course: Electrochemical energy conversion and storage devices			
3) Study programme (undergraduate, graduate): graduated			
4) Status of the course: elected			
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:		
 outcomes): Educate students in the construction, chemistry, thermodynamics and properties of electrochemical energy conversion and storage devices (ECSD) Provide an experience that encourages development of independent thought and engineering approach to the design and application of ECSD Enable sufficient skills for the testing and installation of ECSD in different energy systems and technology Understand the working principles of batteries, fuel cells and supercapacitors 	 Students will be able to recognize the importance of electrochemical energy storage devices in solving energy challenges and providing sustainable development Students must be able to identify and test the properties of electrochemical energy storage devices. Students will acquire necessary knowledge for design and construction novel electrochemical energy storage devices. Students will be able to select appropriate electrochemical energy storage devices meeting specific practical requirements and limitations. 		

Teaching unit	Learning outcomes	Evaluation criteria
1. chemistry and thermodynamics of electrochemical energy storage devices	 - understand the principles of electrochemical energy storage devices - recognize the importance of electrochemical energy storage devices in energy systems and technology - calculate electromotive force from the thermodynamic data 	 explain basic operation mechanisms of electrochemical energy storage devices apply knowledge in calculation of electrical, electrochemical and thermodynamic parameters of electrochemical energy storage devices -

2. Design and testing of electrochemical energy storage devices	 -explain the prerequisites for the construction of efficient electrochemical energy storage devices - describe the operation of batteries and fuel cells and their differences - understand the role of supercapacitors - apply different methods in testing of electrochemical energy storage devices 	 sketch charging/discharging mechanisms of electrochemical energy storage devices construct active electrodes for electrochemical energy storage devices apply electrical methodology in the evaluation of electrochemical energy storage devices

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Full Prof.Katica Sertić-Bionda, PhD.			
2) Name of the course: Petroleum Fuels and Lubricants			
3) Study programme (undergraduate, graduate): graduate			
4) Status of the course: elective			
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:		
outcomes):	1. to understand and apply the fundamentals		
1. to identify the main process parameters and their influence on products (fuels, lubricants) characteristics.	of mathematics, the basic sciences, engineering sciences and engineering design methods.		
2. to classify the processes of fuels and lubricants production and treatment.	2. to identify, define and solve complex engineering problems with relevant		
3. to define the physical and chemical properties and specifications of fuels and lubricants.	packages.		
4. to relate the physical and chemical properties of fuels and lubricants with applied additives.			
5. to analyse the influences of fuels characteristics on vehicle exhaust emissions.			

Teaching unit	Learning outcomes	Evaluation criteria
1. Petroleum fuels	- to relate the physical and chemical properties of fuels with applied additives.	- to identify the types of additives for given fuel to improve its physical and chemical properties.
2. Petroleum lubricants	- to classify the processes of lubricants production and treatment.	- to classify the processes of given lubricant production and treatment.

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Helena Otmačić Ćurković		
2) Name of the course: Corrosion and environment		
3) Study programme (undergraduate, graduate):graduate		
4) Status of the course:		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
 outcomes): 1. identify hazards that corrosion and inadequate corrosion protection present to environment and human health; 2. identify how some of the corrosion protection methods may endanger environment and human health due to the release of toxic compounds; 3. estimate which corrosion protection method is the most adequate for given corrosion issue; 4. relate presence of pollution and climatic parameters to the corrosion level of various structural materials. 	 the ability to understand and apply the fundamentals of the basic sciences, engineering sciences and engineering design methods; the broad education that is necessary to understand the impact of engineering solutions in global, economic, and social contexts; the ability to communicate effectively; the ability to understand social importance and the role of engineering as well as the importance of the highest ethical standards in professional work; English language fluency; 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Environment pollution	 indentify common sources of pollution discuss different approaches towards reduction of pollution caused by industry 	 student should indentify the most common sources of pollution student should explain the principles of sustainable development
2. Corrosion processes	-explain causes of corrosion -distinguish various types of corrosion processes	- identify causes of corrosion and possible type of corrosion that will occur for specific material in given environment.

		-write corrosion reactions for selected combination metal- environment
3. Harmful substances released to environment due to the corrosion or in corrosion protection	 -explain which harmful substances can be released to environment due to the corrosion or in corrosion protection - explain the influence on environment and human health of the most common pollutants related to the corrosion processes 	-name harmful compound that can be released from particular construction or process related to corrosion protection and explain its influence on environment and human health
4. Corrosion damage	 -analyze the importance of corrosion protection for safe operation of various industrial processes and stability of metallic constructions, - identify the critical parts of metallic constructions or technological processes where inadequate corrosion protection may cause serious damage 	 -explain the causes of known corrosion failure -experimentally determine the corrosion rate of metallic materials used in medicine as implants.
5. Influence of environment parameters on corrosion type and rate	 -correlate changes in environment with corrosion stability of metallic materials - relate presence of pollution and climatic parameters to the corrosion level of various structural materials 	 explain key factors that lead to damage of cultural heritage and other constructions in polluted environment experimentally determine corrosion rate of bronze in different environments
6. Corrosion protection methods	 identify potential hazards of application of various corrosion protection methods explain which modifications in existing corrosion protection methods are 	-explain potential hazards of some corrosion protection method and how they can be overcome

needed to comply with recent	
environmental regulation	

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Assoc. Prof. Gordana Matijašić, PhD		
2) Name of the course: Particulate Systems		
3) Study programme (undergraduate, graduate): Chemical Engineering, Graduate		
4) Status of the course: Optional		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. Define and categorize particulate systems, their properties, sampling methods and methods of measurement, interpretation and approximation of particle size distribution	 The ability to apply scientific methods in process analysis and modelling and in product design. The ability to understand basic methods of characterization 	
2. Define methods for determination of powder rheology.	3. To analyze complex chemical engineering problems.	
3. To analyze powder mixing, conveying and storage.4. To analyze health effects, fire and	4. The ability to practice chemical engineering methodology in product development.	
explosion hazards of fine powders.	5. The ability to work both independently and in multidisciplinary teams.	

Teaching unit	Learning outcomes	Evaluation criteria
1. Properties and behavior of particulate systems	 analyze the properties of powders recognize the methods of powder sampling and characterization define rheological parameters and methods of determination powder fluidity 	 define powder types explain methods of powder sampling list and explain methods of characterization explain particle shape distinguish particle and bulk properties define powder rheology explain methods for determination of powder

		fluidity
		- define flow index
		- sketch the graphical representation of powder flow functions
2. Particulate solids handling	- define mechanisms and kinetics of powder mixing	- describe and explain mixture quality
	working principle of powder blenders	- sketch mixing curve
	- explain powder segregation - analyze conveying and	- explain mixing kinetics and determination of mixing rate constant
	storage of powders	- categorize blenders
		- explain working principle of powder blenders and possible problems in mixing
		- explain criteria for blender selection
		- explain particle segregation, mechanisms of segregation and causes and consequences of segregation
		- explain pneumatic conveying
		- calculate examples of pneumatic system scaling
		- list silos types
		- calculate examples of silos design
3. Handling hazards and health effects of fine powders	- define dust explosion mechanisms and key values	- explain condition that will lead to dust explosion
	for their definition - analyze positive and negative effect of fine powders on human health	- define terms: spontaneous ignition, ignition temperature, minimum ignition energy, flammability limits
		- sketch dust fire and explosion pentagon
		- explain possible positive

	and negative effects of fine
	powders on human health

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Helena Otmačić Ćurković			
2) Name of the course: Corrosion and	2) Name of the course: Corrosion and environment		
3) Study programme (undergraduate,	graduate):graduate		
4) Status of the course:			
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:			
 outcomes): 1. identify hazards that corrosion and inadequate corrosion protection present to environment and human health; 2. identify how some of the corrosion protection methods may endanger environment and human health due to the release of toxic compounds; 3. estimate which corrosion protection method is the most adequate for given corrosion issue; 4. relate presence of pollution and climatic parameters to the corrosion level of various structural materials. 	 the ability to understand and apply the fundamentals of the basic sciences, engineering sciences and engineering design methods; the broad education that is necessary to understand the impact of engineering solutions in global, economic, and social contexts; the ability to communicate effectively; the ability to understand social importance and the role of engineering as well as the importance of the highest ethical standards in professional work; English language fluency; 		

Teaching unit	Learning outcomes	Evaluation criteria
1. Environment pollution	 indentify common sources of pollution discuss different approaches towards reduction of pollution caused by industry 	 student should indentify the most common sources of pollution student should explain the principles of sustainable development
2. Corrosion processes	-explain causes of corrosion -distinguish various types of corrosion processes	- identify causes of corrosion and possible type of corrosion that will occur for specific material in given environment.

		-write corrosion reactions for selected combination metal- environment
3. Harmful substances released to environment due to the corrosion or in corrosion protection	 -explain which harmful substances can be released to environment due to the corrosion or in corrosion protection - explain the influence on environment and human health of the most common pollutants related to the corrosion processes 	-name harmful compound that can be released from particular construction or process related to corrosion protection and explain its influence on environment and human health
4. Corrosion damage	 -analyze the importance of corrosion protection for safe operation of various industrial processes and stability of metallic constructions, - identify the critical parts of metallic constructions or technological processes where inadequate corrosion protection may cause serious damage 	 -explain the causes of known corrosion failure -experimentally determine the corrosion rate of metallic materials used in medicine as implants.
5. Influence of environment parameters on corrosion type and rate	 -correlate changes in environment with corrosion stability of metallic materials - relate presence of pollution and climatic parameters to the corrosion level of various structural materials 	 explain key factors that lead to damage of cultural heritage and other constructions in polluted environment experimentally determine corrosion rate of bronze in different environments
6. Corrosion protection methods	 identify potential hazards of application of various corrosion protection methods explain which modifications in existing corrosion protection methods are 	-explain potential hazards of some corrosion protection method and how they can be overcome

needed to comply with recent	
environmental regulation	

1) Course teacher: Prof.dr.sc. Ljubica Matijašević		
2) Name of the course: Process economy		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
 define the terms economy and economics reproduce the form of interest and explain the time value of money. 	1. connect the profession of chemical engineer with economic decisions adoptions	
 3. explain and reproduce the cash flow diagram on the example 4. analyze and explain the profitability criteria 	 2. Interpret feasibility study (economic acceptability of the project) 3. application to sustainable industrial activities (environmental studies, cost -benefit analysis) 	
through example 5. categorize the costs in production systems, relate with the laws of yield	4. reproduce the cost of produced system	

Teaching unit	Learning outcomes	Evaluation criteria
1. Process economy and chemical engineer profession	 define the terms economy and economics give examples of management in production systems reproduce the steps of engineering economic analysis explain the tree diagram of cash flow for industry explain the structure of the company with the aims and constraints give example of complex banking transactions 	 reproduce the steps of engineering economic analysis give examples of management in production systems reproduce the cash flow in company (profit vs.net profit) explain of complex banking transactions from the standpoint of costs and benefits
2. The time value of money	 select examples of different types of interest explain time bases for compound 	- explain the time basis for compound interes

	interest calculation with the impact to the earned	- making tasks related to compound interest calculation
	-give example of cash flow diagram (CFD diagram)	- know calculations arising from the CFD diagram
	- select example calculated arising out from CFD diagrams (future value, present value, acounting period, arithemetic gradient)	-generateCFD diagram based on the given task
		- express different between depereciation and equipment
	- explain the terms: inflation, depreciation, decrease the value of equipment, equipment life	life
3. Profitability analysis	-indicate discounted and nondiscounted profitability criteria	- define discounted and nondiscounted profitability
	- compute of profitability criteria on the examples of investment in in the project process (analytical and graphical)	criteria -generate CFD diagram on the given task and calculate NPV value for select time
	- explain NPV (net present value) as a measure of profitability	-reproduce NPV at choice of equipment with selected methods
		- select the profitable capital investment in the project on the basis of NPV
4. The costs in production systems	- explain the division of costs based on capacity	- analyze fixed and variable cost
	- explain the difference: costs in mass vs. average costs and their relation to the laws of yield	-calculate the limit cost and coefficient reagibility on the given task
	- reproduce terms: limit cost and coefficient reagibility with examples	-reproduce the cost over a long period and relate with
	- relate costs with capacity	capacity
5. Growth companies	- specify the external and internal the growth factors of companies	-give example of calculating the break-even point
	-explain different the growth factors of companies and mode of growth	- give example of calculating the safety factor and explain
	- demonstrate the structure of the salling price of the product	the meaning of the given example
	-reproduce the methods of calculation	- demonstrate on diagram the
	- demonstrate of calculating the safety factor and connect them to the break-event point	with total revenues
		- classify the methods of calculation and explain the structure of the product price
	· · · · · · · · · · · · · · · · · · ·	

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Sanja Lučić Blagojević, Ph.D. Prof. Mirela Leskovac, Ph.D.				
2) Name of the course: Formulation Engineering				
3) Study programme (undergraduate, graduate): Graduate program Chemical engineering				
4) Status of the course: regular				
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:			
outcomes):1. To apply product engineering principles and methodology in product design and production.	1. To analyze, optimize and connect the fundamental elements of the process and production in the chemical and related industries.			
2. To appraise product quality functions with regard to properties, process and application	2. To manage and plan the new processes, product design and sustainable production.			
functions.3. To create new products with functional properties and added value.	3. To identify, define and solve complex problems in the field of chemical engineering.			
4. To demonstrate and sketch diagrams, and practical performance development of the product according to market needs	4. To apply the methods, models and techniques in solving case studies.			
5. To design a new product combining multiple functions of engineering and manufacturing, industrial design and marketing.	5. To apply and deepen the generic knowledge and methodology of chemical engineering in the integral development of the process and product for market by using original ideas.			

Teaching unit	Learning outcomes	Evaluation criteria
1. Product engineering and design	 to apply the tools and methods of product engineering for the selected product to apply the design of 	 define the concept and explain the methodology of product design connect functions of quality, properties, processes

	chemical processes and products - to sketch the pyramid of chemical product - to apply the principles of formulating a given product - to apply knowledge of the operations and processes	 and applications in the design of the product assess the quality factors of the selected product explain the methods of formulating at example of product outline the scheme to
	important in the formulation engineering in product design	product prototype with new functional properties
2. Surface and interface phenomena and selected processes in formulation engineering	 to optimize the conditions at the interface to apply the knowledge of the colloidal disperse systems used in the formulation of emulsions, dispersions and suspensions to use methods of predicting properties 	 calculate and predict the conditions of thermodynamic stability at the interface explain the effect of surfactants on the stability of colloidal systems explain the models and parameters for estimation of components miscibility in the products optimization
3.Rheology of complex fluids and products in function of formulation engineering	 to recognize the influences rheology in product engineering to apply the rheometry techniques in quality control and product formulation 	 using equations define and explain the rheological behavior of different fluids and connect them with application properties explain the results of rheological measurements of the product
4. Formulation and properties of selected products (emulsions, dispersions, suspensions, foams and powders)	 to analyze the elements of the process of formulation (<i>in</i> <i>situ, ex situ</i>) that affect the stability of multiphase systems and the properties of the product to adapt the formulation for the final purpose by additives to design of the formulation of powders, granules and agglomerates in the function product application 	 define and explain the factors that affect the stability of multiphase systems, depending on the selection of stabilizer enumerate types of additives in relation to the role in the formulation connect the modes and mechanisms of agglomeration and properties of the product

	- to design s processes in the function of product engineering	- give examples of operations (mixing, grinding, dispersion, emulsification, agglomeration, flocculation, drying) in a discontinuous batch process of products formulation
5. Functional properties of products	- to integrate and apply the methodology of product engineering for value-added product or a new product (multi-level approach, functional properties, quality factors, structural features, function application)	- outline the concept of the new products in case studies (detergents, pharmaceuticals, pigments and color cosmetic and agricultural products, food, etc.)

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: prof. dr. sc. Zlata Hrnjak-Murgić prof. dr. sc. Marko Rogošić prof. dr. sc. Emi Govorčin Bajsić		
2) Name of the course: Polymer Engineering		
3) Study programme (graduate): Chemical Engineering		
4) Status of the course: Mandatory (of a module)		
Expected learning outcomes at the vel of the course (4-10 learning tcomes):6students shall compare and value different thods of synthesis of polymer materials1.students shall weigh the influence of ferent process variables on the structure culiarities of polymer materials obtained by lustrial polymerisations90students shall choose the method of 	 b) Learning outcomes at the level of the study programme: students shall recognise the specificities of industrial synthesis and/or processing procedures within the broader contexts u material science, chemical industry and chemical engineering as a profession in general 2. students shall plan and perform experiments on advanced equipment for ynthesis, analysis and processing of polymers; students shall conduct advanced, computer-assisted methods of processing of lata obtained by those experiments B. students shall utilise advanced, computer-assisted graphical procedures for problem presentation as well as for problem solving B. students shall select and extract 	
pr 4. in lin	students shall nformation fror imited initial in	

Teaching unit	Learning outcomes	Evaluation criteria
1. Monomers and polymer synthesis, nomenclature	Students shall link knowledge from organic chemistry with knowledge from the polymer/polymerisation science	

2. Polymerisation mechanisms: chain, step, ionic polymerisation polimerizacija	Students shall compare and evaluate various methods of synthesis of polymer materials	Laboratory report on the polymer synthesis / chain and step polymerisation
3. Coordination polymerisation and copolymerisation	Students shall compare and evaluate various methods of synthesis of polymer materials	Entrance exam for laboratory practice
4. Industrial procedures of obtaining polymers: bulk polymerisation and emulsion polymerisation	Students shall compare and evaluate various industrial procedures of obtaining polymers	Laboratory report on the polymer synthesis / emulsion polymerisation
4. Industrial procedures of obtaining polymers: solution polymerisation and suspension polymerisation	Students shall compare and evaluate various industrial procedures of obtaining polymers	Laboratory report on the polymer synthesis / suspension polymerisation Final (partial) exam
6. Polymer molecular weights	Students shall link knowledge from mathematics (probability theory) with knowledge from the polymer/polymerisation science	Seminar report on the molecular weight distribution of polymers
7. Modelling of step polymerisations	Students shall weigh the influence of various process variables on structure peculiarities of materials obtained by step polymerisations	
8. Modelling of chain polymerisations	Students shall weigh the influence of various process variables on structure peculiarities of materials obtained by chain polymerisations	Seminar report on the modelling of step/chain polymerisations
9. Modelling of copolymerisations and chain branching during polymerisations	Students shall weigh the influence of various process variables on structure peculiarities of materials obtained by	Seminar report on the modelling of copolymerisations / chain branching

	copolymerisations and polymerisations accompanied with chain branching	
10. Modelling of polymerisation reactors / modelling of heterogeneous polymerisations	Students shall model the polymerisation reactions performed in basic types of polymerisation reactors (ideal batch, homogeneous continuous stirred tank, segregated continuous stirred tank, tubular reactor) / Students shall model (on a basic level) suspension, emulsion and heterogeneous coordination polymerisations	Seminar report on the modelling of polymerisation reactors / modelling of heterogeneous polymerisations
11. Fundamentals of the production of polymer specimens	Students shall link knowledge from physics and physical chemistry with new terminology from the field of polymer materials processing	Laboratory report on the multiphase system compounding
12. Polymer processing on a large scale	Students shall compare and evaluate various polymer processing methods, students shall create energy balances, students shall correlate process parameters with processing and application properties of polymer materials	Laboratory report on the extrusion process
13. Extrusion	Students shall analyse extrusion as a most common operation utilized in polymer processing	Laboratory report on the extrusion process
14. Reinforced plastics and composites	Students shall compare and evaluate various methods of shaping reinforced thermoset and thermoplastic materials as well as cellular materials	Seminar report on the dynamic mechanical analysis Final (partial) exam
15. Multiphase polymer systems	Students shall model correlations of composition, structure and properties of	

multiphase polymer systems /	
students shall classify ways	
of compatibilisation as well	
as modes of increase of	
mutual phase miscibility	

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teachers: Prof. Felicita Briški PhD Associate. prof. Ana Lončarić Božić PhD		
2) Name of the course: Industrial wastewate	er treatment	
3) Study programme: graduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
1. the ability to understand the water quality requirements and analyse the characteristics of industrial wastewaters	1. the ability to analyse and optimise wastewater water treatment processes ;	
2. the ability to define treatment processes and process equipment, and to determine key input and output variables for specific industrial wastewaters.	2. the ability to understand and assess the feasibility of wastewater treatment processes to meet desired needs within realistic technological, environmental, economic, and health and safety constraints	
3. the ability to outline the process flow diagram for wastewater treatment processes	3. the ability to manage industrial wastewater treatment processes.	
 4. the ability to apply integrated strategy of wastewater management 4. the ability to identify opportunities and leverage advances in research and development in the field of industrial wastewater treatment 		

Teaching unit	Learning outcomes	Evaluation criteria
1. Characterization of industrial wastewaters; sources and effects of different water pollutants and their influence on effectiveness of selected wastewater treatment process.	 define physical, chemical and biological characteristics of wastewaters and their potential impact on receiving water bodies select key chemical and physical indicators of wastewater pollution classify the stages of wastewater treatment, treatment processes and main types of water pollutants 	 explain the influence of suspended and dissolved organic water pollutants on quality of receiving water bodies specify the characteristics and understand the importance of sum water quality parameters COD and BOD₅ in water analysis, calculate COD/ BOD₅ ratio determine appropriate

		sequences of water treatment stages and processes regarding the type of waste water pollutants
2. Physico- chemical and biological wastewater treatment processes, process equipment, and sludge management	 apply physico-chemical and biological processes for wastewater treatment define process variables and process equipment for wastewater treatment outline the process flow diagram for physico-chemical and biological wastewater treatment list and overview the main characteristics of methods for the treatment and disposal of sludge generated in wastewater treatment processes 	 propose, outline and describe the process flow diagram for the treatment of wastewater based on given water quality parameters perform the mass balance for the given processes and propose the appropriate process equipment set-up explain Monod equation for stationary and non-stationary phases of wastewater treatment processes select the appropriate sludge treatment method based on the given example
3. Wastewater management strategy	- identify national legislation relevant for the wastewater treatment and water quality regulation and standards	-outline advanced water management system based on principles of economic viability and sustainability

1) Course teacher: Prof. Marija Vuković Domanovac, PhD Prof. Zlata Hrnjak-Murgić, PhD

2) Name of the course: Solid and Hazardous Waste Treatment

3) Study programme (undergraduate, graduate): graduate

4) Status of the course: obligatory

5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:
 to collect the basic knowledge related to the terminology, division and basic data on waste to define of the physical, chemical and biological processes in waste treatment to describe the technology of waste treatment and disposal of solid waste to assemble the legislation on the protection of environmental components in the engineering planning to collect and understanding of the basic knowledge related to the terminology, synthesis, chemical composition, structure, production and properties of polymers to understand the basic knowledge related to the technology of processing and recycling of polymeric materials to work independently in the chemical and physical laboratory to self-presentation and interpretation of laboratory results in written and oral form 	 to use basic professional knowledge in the field of waste management to analyze and estimate an integrated waste management system knowledge of various kinds of materials and technologies for their recycling the ability to create solutions and independently solve problems (including the identification and formulation of the problem) in materials science and engineering
7) Teaching units with the correspond	ing learning outcomes and evaluation

crite

criteria		
Teaching unit	Learning outcomes	Evaluation criteria

 to define the types of waste to define specific categories of waste to indicate the recovery and/or disposal of waste to assemble the legislation and planning documents related to the issue of waste management 	 distinguish waste according to place of generation and properties recognize regulations related to special categories of waste distinguish between material and energy recovery and estimate the possibilities of waste disposal use of legislation in the field of waste management
 to explain the mechanical - biological waste treatment (MBT) to explain the thermal treatment of waste to indicate the possibilities of advanced methods of waste treatment to assemble the legislation and documentation relating to the procedures for the treatment of waste 	 interpret basic ways of waste treatment distinguish physic, chemical and biological processes of waste treatment explain the criteria for the application of more advanced methods of waste treatment use of legislation in the field of waste management
 to indicate the procedures for the treatment of flue gases and disposal of waste products to define the categories of landfills to indicate the possibilities remediation of contaminated soil to assemble the legislation and documentation related to the procedures of processing residue from waste treatment 	 indicate procedures for the treatment of flue gases and the possibilities of recycling and disposal of waste products distinguish categories of landfills and explain the criteria for acceptance of waste at landfills assemble of the potential remediation of contaminated soil use of legislation in the field of waste management
	 to define the types of waste to define specific categories of waste to indicate the recovery and/or disposal of waste to assemble the legislation and planning documents related to the issue of waste management to explain the mechanical - biological waste treatment (MBT) to explain the thermal treatment of waste to indicate the possibilities of advanced methods of waste treatment to assemble the legislation and documentation relating to the procedures for the treatment of waste to indicate the procedures for the treatment of flue gases and disposal of waste products to define the categories of landfills to indicate the possibilities remediation of contaminated soil to assemble the legislation and documentation related to the procedures of processing residue from waste treatment

4. Introduction to Polymer Chemistry	- acquisition of knowledge about the synthesis processes, chemical composition, the structure of the polymers and the impact on the final properties of materials	 distinguish the synthesis processes to obtain different type of polymers explain the structure properties relationship
5. Polymer waste stream, advantages and disadvantages of polymer materials	- acquisition of knowledge and understanding of the types of polymeric materials in the application, their collection, the pretreatment processes, secondary raw materials for recycling	 -distinguish the type of polymer waste - indicate the procedures and processes of polymer pretreatment
6. Recycling of polymeric materials	- acquisition of knowledge and understanding the mechanical, chemical recycling and energy recovery of polymer waste	 distinguish the technological processes for recalling plastics indicate procedures for recycling of different polymers

1) Course teacher: Prof. Sanja Papić, PhD, Prof. Ana Lončarić Božić, PhD, Prof. Zlata Hrnjak-Murgić, PhD		
2) Name of the course: Technology of Dyes and Coatings		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
 outcomes): 1.explain the basic concepts of color and coloration theory 2.describe the processes of production of selected organic dyes and pigments 3. to adopt the knowledge of the application field of dyes and coatings respect to their characteristics 4. acquisition the ability to correlate the structure and properties of components with their role in coatings 5. be familiar with the process of production of coating materials and the impact of key parameters on the application properties of the final products 6. knowing the natural and synthetic binders for paints and their application 7. acquisition of the skills of independent work safely in chemistry lab. 	 the ability to design a system or process to meet desired needs within realistic constraints, such as economics, environmental, health and safety, manufacturability and sustainability; understanding and integration of four major elements of materials science and engineering: structure, properties, processing, and performance of materials, and application of this knowledge on practical issues; the ability to create solutions and independently solve problems (including the identification and formulation of the problem) in materials science and engineering 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Organic synthetic	- explain the basic concepts	-understand the basic
uyes	between the chemical	-explain the coloration
	structure of organic compounds and their color	theory - know the classification of
	(coloration theory)	dyes

	- state the areas of application and classification of organic dyes	 list the chemical and the application groups of dyes and know their characteristics know the application fields of colorants (organic dyes and pigments)
2. Synthesis of organic dyes and pigments	-describe the processes of production of selected organic dyes and pigments	 -known the intermediates in the production of dyes -know the method of production (synthesis) of selected dyes from important chemical classes - describe processes of production of selected dyes including an understanding of chemical reactions, a process flow diagram and process conditions - understand the optimization of the synthesis of organic pigments, physical conditioning operations, the impact of crystal structure and particle size on the their application properties
3. Components of coating materials	- understand the correlation between the properties of coating materials and their applicability	-classify coating materials and specify main components and their role in coating material
	- correlate the structure and properties of specific components and their role in coating material	- explain the influence of structure and properties of pigments and fillers on application properties of coating materials
		-list the main representatives

		and the production methods of particular types of pigments and fillers in coating materials - classify the main types of additives and explain their role in coating materials -explain the theoretical background and specific requirements for solvents in coating materials
4.Production and application of coating materials	 understand the production and application processes of coating materials understand the influence of key production process parameters on application properties of coating materials 	 -outline and explain the production process of coating materials - describe the application processes for coating materials on different surfaces - specify and explain the standard methods for coating materials and dry film testing
5. Methods of binder synthesis	- to adopt the knowledge about the synthesis, chemical composition, structure, production, properties and application of synthetic binders (polymers) in coatings	 to distinguish the various synthesis processes of binders to distinguish the structure properties relationship and the importance for the application to work in the laboratory for quality control
6. Binders for paints and varnishes	 to adopt the knowledge about the natural binders: natural resins, natural oils, cellulose derivatives, to adopt the knowledge about the synthetic binders: polyester resins, acrylic, amide, polyurethane, phenolic 	 to explain the way of manufacturing of the natural binders to explain the connections of structure properties relationship and the application: outdoor and indoor application, primaries and finishing coatings

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Zlata Hrnjak-Murgić, PhD

University of Zagreb Faculty of Chemical Engineering and Technology

2) Name of the course: Polymer Science and Technology		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course: elective		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
 outcomes): 1. to collect the basic knowledge about main polymerization reactions 2. to describe and understand the the types of homogeneous and heterogeneous polymerization processes 3. to understand the relationship structure – properties of polymer materials 4. to learn important technologies for polymer processing 5. to understand the knowledge related the polymer degradation and stability 6. to describe and understand the biopolymers 	 application of scientific principles underlying chemistry and chemical engineering on materials, their structure, properties, processing and performance ability to function effectively as an individual or as a member of a multi- disciplinary team, and to present the work in both written and oral form; skills necessary for running chemical and physical laboratories, selection and preparation of adequate laboratory equipment and organization of laboratory work according to standards; an introductionary knowledge to advanced materials and technologies 	

Teaching unit	Learning outcomes	Evaluation criteria
1. The main polymerization reactions	 to define mechanisms of polymerizations: chain, step, ionic polymerisation to define the main types of synthesized polymers (polyolefines, polyesters, polyamides) acquisition of knowledge and understanding influence of catalysts type, temperature and time on formation of polymer chain structure and of molecular weight 	 -to interpret polymerization processes -to distinguish different type of polymerizations -to recognize the type of condition and type of structure that is formed

2. The homogeneous and heterogeneous polymerization processes	 to indicate the type of polymerizations: in bulk, in solution, emulsion, suspension to indicate the different reactors for polymerizations 	 -to define the polymerization types: advantages and disadvantages - to explain the differences between the reactors
3. the relationship structure– properties of polymermaterials	 to explain the importance of the structure – properties relationship to indicate the importance of creating a different structure of polymer chain 	 to define and explain properties of polymers in relations with applications to distinguish the importance of different polymer chain structures
4. Technologies for polymer processing	 to indicate basic type of polymer processing technologies: extrusion, injection, pressing, blowing to indicate the main equipment and conditions for polymer processing 	 -to define type of polymer processing -to define main processing equipment for polymers - to explain effect of conditions of production on the properties
5. Polymer degradation and stability	 to indicate the properties of polymer materials acquisition of knowledge about the main types of polymer degradation and their mechanism to indicate the mechanism of stabilization processes 	 -to define various properties of polymer: chemical properties, mechanical, physical - to define degradation processes of polymers: photodegradation, thermodegradation, oxidative degradation - to explain the importance of polymer stabilization
6. Biopolymers	 acquisition of knowledge about biopolymers to indicate biodegradation processes 	 -to define biopolymers and biodegradation - to explain sustainable development: advantages and disadvantages of biopolymers

