1) Course teacher: Svjetlana Krištafor (Assistant Professor), Stjepan Milardović (Associate Professor), Ivana Steinberg (Assistant Professor)

2) Name of the course: General and Inorganic Chemistry

3) Study programme (undergraduate, graduate): Undergraduate

4) Status of the course: Basic

5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:
outcomes):	1. Basics of chemistry.
1. To apply acquired knowledge that is necessary for understanding other branches of chemistry.	2. Basic laboratory skills and working standards in physical, chemical and biochemical labs.
2. To solve chemical problems based on fundamental chemical principles.	3. Safe handling of chemicals and waste materials, their management and re-use.
3. To demonstrate basic laboratory skills in handling chemical substances.	4. Time planning and management
4. To analyse the structure of three different states of matter.	5. Monitoring and recording of environmental pollution by measurement of physical and chemical parameters and their systematic
5. To argue the properties of individual elements with respect to the position of an element in the periodic table.	recording and documenting.6. Collection, identification and interpreting of the information about samples or
6. To identify stable and less stable (unstable) oxidation states of elements.	processes. 7. Methodology of theoretical interpretation
7. To conclude on the stability of hydrides and oxides of elements based on their electronegativity.	of experimental results.
8. To conclude on the redox behaviour of the substance in elemental form based on standard reduction potential.	
9. To conclude on the reactivity of elements in elemental form based their ionization energy.	
10. To identify the compound based on its chemical formula and to write a chemical formula of inorganic compound based on its name.	

University of Zagreb Faculty of Chemical Engineering and Technology

7) Teaching units with the corresponding learning outcomes and evaluation criteria **Teaching unit** Learning outcomes **Evaluation criteria** The student will list the properties of matter and distinguish elements from compounds, pure substances from mixtures of substances. - to identify the property as a chemical or physical, According to the modern theory of the atomic intensive or extensive structure, the student will - to distinguish molecules, 1. Introduction to chemistry; explain the uncertainty atoms and ions Quantum world; Quantum - to describe the structure of principle of quantum mechanics. mechanics and outline the atoms energy levels and forms of - to write the electronic atomic orbitals. configuration of neutral atoms and ions Based on the absorption and emission of electromagnetic radiation student will compare the ground and excited states of atoms. 2. Chemical bonds; The student will identify Molecular shape and covalent and ionic chemical structure; bonds and give examples of covalent and ionic - to draw the Lewis structures compounds. of molecules and ions The student will define the - to determine the dipole character and bonding (ionic valence and core electrons from the position of the or covalent) based on the element in periodic table. electronegativity of elements - to predict the type, length The student will write Lewis and strength of chemical symbols of elements and bonds apply them when drawing - to distinguish the Lewis structures. hybridization types and Based on the quantum theory explain the difference of chemical bonding, the between sigma and pi bonds student will sketch the energy levels of the molecules, write electronic configuration of molecules and estimate the

	molecular (non)stability.	
3. Gases, liquids and solids; Reaction thermodynamics; Physical and chemical equilibria; Chemical kinetics; Electrochemistry; Nuclear chemistry	The student will explain the difference between ideal and real gases and compare different states of matter based on the intermolecular interaction. The student will also explain the role of enthalpy in a chemical reaction, estimate (non)spontaneity of the process, determine the speed and order of chemical reaction and estimate its direction. The student will compare the acids and bases. The student will explain the different types of radioactive decay.	 to calculate <i>p</i>, <i>V</i>, <i>n</i> or <i>T</i> at defined conditions using gas laws to outline and explain the types of intermolecular interactions to calculate the change in enthalpy and Gibbs free energy of a chemical (electrochemical reaction) reaction to calculate and analyse the chemical equilibrium constant to calculate the pH of the solution to write and balance the nuclear reaction equation
4. Inorganic chemistry Periodicity of chemical properties (electronegativity, ionization energy, electron affinity, oxidation numbers); The general atomic and physical properties of molecular hydrogen (preparation in industrial and laboratory scale); The 1st group of the elements (alkaline earth metals); The 2nd group of the elements (alkali metals)	The student will explain the periodic trends of the first ionization energy, electronegativity and atomic radii. The student will predict oxidation and reduction trends in periodic table based on standard reduction potentials. The student will compare reactivity of atomic and molecular hydrogen. The student will propose a suitable method for the hydrogen preparation (reduction of water, acid or base) based on standard reduction potential of the metal. The student will explain the typical reactions of alkali and	 to argue the questions based on application of theoretical principles to solve the worked examples applying theoretical knowledge

	alkaline earth metals.	
The 13th group of the elements (boron group) The general chemical properties of the boron group of the elements. Properties of compounds (oxidation states in the range –3, –1, 0, +1, +2) The 14th group of the elements (carbon group) The general chemical properties of the carbon group of the elements. Preparation, physical and chemical properties of carbon (diamond, graphite, fullerene, graphene) CO and CO ₂ .	The student will recognize stable and less stable oxidation states based on electron configuration of elements. The student will conclude on stability of hydrides and oxides (13th group of elements) based on electronegativity data The student will explain the reactivity of aluminum in elemental state. The student will explain the preparation of polyborates by condensation of B(OH) ₃ . The student will conclude on reactivity in elemental states based on ionization energy. The student will analyse properties of compounds containing the elements in oxidation states -4,-2 and 0 (14th group of elements). The student will explain hydrolysis of tin and lead compounds. The student will explain the preparation of Si(OH) ₄ .	 to argue the questions based on application of theoretical principles to solve the worked examples applying theoretical knowledge
The elements of 15th group (nitrogen group) The general chemical properties of the nitrogen group of the elements. The change of electronegativity along the group, properties of compounds (oxidation states in the range -3, -1, 0, +1, +3,	The student will conclude on the stability of hydro-oxides, -sulfides, -selenides and tellurides based on electronegativity. The student will conclude on the bond order and magnetic properties of oxygen, oxides, peroxides and superoxides	 to argue the questions based on application of theoretical principles to solve the worked examples applying theoretical knowledge

+5). Preparation, use and chemical properties of hydrides of nitrogen, phosphorus, arsenic, antimony and bismuth. The elements of 16th group (chalcogens) The general chemical properties of the chalcogens group of the elements. The properties of compounds (oxidation states in the range -2, -1, 0, +2, +3, +4, +6).	using MO diagram The student will conclude on the molecular and atomic oxygen reactivity. The student will compare the reactivity, acid-base stability and redox properties of ammonia, phosphine, arsine and bismuthine. The student will conclude on the bond order of N ₂ O, NO, NO ₂ , N ₂ O ₃ , N ₂ O ₅ using MO diagram of nitrogen and oxygen.	
The elements of 17th group (the halogens) The general chemical properties of the halogen elements, physical and chemical trends along the group. Oxoacids and their salts (preparation and properties). The elements of 18th group (noble gases) Atomic and physical properties of noble gases. Preparation, production and use. Xenon compounds and derivatives of other noble gases.	The student will analyse the stability and bond order in diatomic halogen molecules using MO diagram. The student will conclude on the hydrohalous and hypohalous acid strength based on electronegativity. The student will draw the Lewis structure of halogen oxoacid and predict its strength.	 to argue the questions based on application of theoretical principles to solve the worked examples applying theoretical knowledge
The properties of metals	The student will compare the stability of complexes of 3d, 4d and 5d elements. The student will analyse quantitatively electron	 to argue the questions based on application of theoretical principles to solve the worked examples applying theoretical

absorption spectra of various dn systems.	knowledge
The student will describe the magnetic properties of metallic complexes and their colour.	

1) Course teachers: Assoc. prof. dr. sc. Ana Lončarić Božić, Assoc. prof. dr. sc. Ana Vrsalović Presečki		
2) Name of the course: Introduction to enviromental engineering		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 6) Learning outcomes at the level of the study programme:		
1. Understand the correlation between anthropogenic activities and environmental pollution problems and be acquainted with the mitigation measures in relation with different emissions	 Critical analysis of environmental problems Recognize the necessity of getting knowledge from different scientific disciplines in order to successfully solve environmental problems 	
 Understand the opportunities of preventive approach in environmental protection and management 	3. Basics of fundamental environmental engineering knowledge4. Basics of professional protection of local and adabad environmental	
3. Adopt the main principles and methodology of preventive strategies as environmental engineering tools	and global environment, environmental development and control, and environmental legislation for water, air and soil protection	
 4. List and explain the objectives of the scientific disciplines environmental engineering 5. Explain the importance of learning courses, which are the integral part of the study program "Environmental engineering" 6. Explain the importance of eco-technology 		

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1. Environment - concepts, problems, principles of	- explain concepts related to the environment	- define the terms biosphere, technosphere and ecosystem
environmental protection		- explain the causes and consequences of environmental pollution
		- list the objectives and principles of environmental protection
		- define sustainable

		development
2. Anthropogenic and natural environmental pollution sources	 understand the correlation between anthropogenic activities and environmental pollution problems be acquainted with the mitigation measures in relation with different emissions 	 define the types of pollution sources according to different criteria list the main pollution sources and explain the correlation with air, soil and water pollution define and explain the terms: hydrological cycle, water pollution, eutrophication, greenhouse gasses, global warming potential tropospheric and stratospheric ozone, mechanisms transportation and transformation of soil pollutants specify environmental and human health problems mitigation measures related to the particular the emissions
3. Preventive approach in environmental protection and management	 -understand the opportunities of preventive approach in environmental protection and management -adopt the main principles and methodology of preventive strategies as environmental engineering tools 	 -explain the historical development and adoption of preventive approach in environmental engineering practice -define the main principles and specify elements of preventive environmental management tools such as cleaner production, eco-design and environmental management systems,
4. Environmental engineering , eco-technology	 list and explain the objectives of the scientific disciplines environmental engineering explain the importance of learning courses, which are the integral part of the study program "Environmental engineering" explain the importance of eco- technology 	 define environmental engineering specify the goals of environmental engineering list the knowledge that environmental engineer required define the role of the necessary knowledge in environmental engineering define eco-technology distinguish eco-technology and other technologies

English language (basic course)

COURSE AIM: Gaining competences like reading, oral and written fluency in the English language related to chemistry. Individual classification of new vocabulary by using the online dictionaries to acquire correct pronunciation and placing it in the e-class glossary. As part of the course students will infer basic vocabulary of chemical terminology in English, adjectives that describe the various states of matter, compounds and solutions, and ways in which they can read chemical equations, rules when to use the definite article and the indefinite articles. The students will also demonstrate the rules pertaining to the order of adjectives in a sentence, the comparison of adjectives and superlative form of adjectives and adverbs. They will also illustrate how to write a CV, do the revision tests on their own in the e-class, take part in group work and put their group work in the e-portfolio. DEVELOPMENT OF GENERAL AND SPECIFIC COMPETENCIES OF THE

STUDENTS:

General competencies: pronunciation of basic chemistry elements and names of compounds, acids, molecules and reading of numbers, equations as well as naming the ionic compounds in English.

Specific competencies: describing the characteristics of a material by using adjectives, use of suffixes and prefixes, comparison of adjectives, adverbs and linking words.

STUDENT OBLIGATIONS: The students are obliged to attend classes and are to put their CV in their e-portfolio (Euro pass CV). They are obliged to practice solving the revision tests to prepare for the midterm tests. They become eligible to attend the midterm tests by attending class regularly. Students must have their indexes or ID cards in order to take part in written tests. If they are not eligible to attend the midterm tests then they have to take the final written and oral tests at the end of the second semester. The oral test refers to the lab experiment they did as a group which should be in their e-portfolio. They have to orally explain the lab report in order to get a final grade.

SIGNATURE REQUIREMENTS: The students must attend 80 percent of all classes and take part in the language exercises during class, write their CV (Euro pass CV) and put their group work and CV in the e-portfolio. They are to pass the revision tests in the e-class on their own. They have to pass all written and oral exams for the final grade.

TEACHING METHOD: lectures, individual work on the e-class and e-portfolio, language exercises such as reading, pronunciation, answering questions, pair work, group work, use of computer and consultations according to necessity.

METHOD OF ASSESSMENT:

Written midterm tests (60 percent or more on both midterm tests) and e-portfolio content Written final exam (minimum 60 percent to pass) and oral exam (presentation of lab experiment conducted at the University and filmed) which is linked to the filmed lab experiment group work in their e-portfolio.

QUALITY CONTROL AND SUCCESS OF COURSE: anonymous student survey METHOD PREREQUISITES:

Access to a computer and knowledge of e-class and e-portfolio passwords in the Moodle and Merlin programs.

COURSE LEARNING OUTCOMES:

- 1 students will generate basic concepts of chemistry terminology in English
- 2 students will explain new vocabulary and demonstrate pronunciation of it by learning it on
- it on
- their own with the aid of on-line dictionaries

- 3 students will demonstrate how to use the e-portfolio at the beginners level
- 4 students will examine the additional materials in the e-class
- 5 students will prepare for the midterm tests by practicing the revision tests in the e-class

PROGRAM LEARNING OUTCOMES:

- 1 students will interpret the expert terminology used in the field of chemistry today
- 2 students will generate use of English grammar at the beginners level
- 3 students will write their own Euro pass CV in English and put it in their e-portfolio
- 4 students will use the e-class and e-portfolio programs on their own

English language (advanced course)

COURSE AIM: To gain competencies for advanced reading, oral and written correspondence in the English professional language of the students trait. Independent learning of new vocabulary by using the on line dictionaries that also provide US and UK pronunciation. The students will know how to apply basic technical terminology and learn to negotiate in English. Preparing the students for oral presentations in English for future international conferences. Students will have mastered the basic technical terminology in English during this course. Students will also become familiar with some of the customs of the United States and the United Kingdom.

THE DEVELOPMENT OF GENERAL AND SPECIFIC COMPETENCIES OF STUDENTS:

General competencies: pronunciation of specific terminology that is related to various branches of technology in English.

Specific competencies: writing their own CV and seminar paper. Correct use of grammar.

STUDENT OBLIGATIONS: Students are required to attend lectures and are obliged to place their Euro pass CV in their e-portfolio. They are also expected to solve the revision tests in their e-class. They have to attend the midterm tests if they are eligible to do so, depending on their attendance record. They are obliged to bring their Index or ID card to class during midterm and final tests.

SIGNATURE ELIGABILITY: In order to get a signature at the end of each semester the student must be present in class for 80 percent of the lectures and take part in the exercises during class, write their CV and correct it, place their CV in their E-portfolio. The student must pass midterm exam 1.

MANNER OF TEACHING: lectures, language exercises (reading, pronunciation, understanding, speaking), independent learning (e-class), pair work, group work, individual answering questions related to the subject matter, grammar exercises and consultations if need be.

ASSESSMENT MANNER AND EXAMINATION:

Written tests (minimum of 60 percent or more scored on each midterm test excuses the student from having to take the final written and oral tests). They also have to have both seminar papers in the e-portfolio in order to get the final grade.

Written test (minimum of 60 percent in order to pass) and oral test (explanation of lab experiment)

QUALITY CONTROL AND COURSE SUCCESS: anonymous student survey METHOD PREREQUISITES:

Access to a computer and knowledge of password to access e-class and e-portfolio in the Moodlu or Merlin programs. Each student has to have their access code to enter these programs.

LEARNING OUTCOMES OF THE COURSE:

- 1 students will describe basic concepts of technology and summarize the terminology in English
- 2 students will individually learn and be able to repeat the pronunciation of new vocabulary
- 3 students will practice using the e-portfolio at an advanced level
- 4 students will individually examine the additional material in the e-class

5 students will individually prepare themselves for the midterm tests by reviewing the revision

tests in their e-class

LEARNING OUTCOMES AT PROGRAM LEVEL:

1 students will recognize expert terminology used in their field of technological expertise

2 students will demonstrate use of English grammar at the advanced level

3 students will demonstrate how to write a CV in English (Euro pass CV) and a lab report

4 students will practice the use of the e-portfolio and e-class programs on the computer

1) Course teacher: dr. sc. Miroslav Jerković, Assistant Professor		
2) Name of the course: Mathematics I		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: obligatory		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. Distinguish and correctly use various number structures, their notation and	1. Apply obtained competence in using numbers for quantitative description of physical properties.	
available operations.2. Apply coordinate systems (plane, space and higher-dimensional) and corresponding basic mathematical constructions: vectors, matrices and systems of linear equations.	 Use the knowledge of coordinate systems, matrices and vectors to model engeneering problems. Apply functions and their derivations in analysis of engineering problems. 	
3. Use elementary functions, distinguish their graphs and be able to interpret the corresponding relationship between dependent variables.	anarysis of engineering problems.	
4. Master the notion of derivative, as well its physical and geometrical interpretation. Be competent to apply the notion of derivative to model and solve practical problems.		
5. Actively use the corresponding basic procedures in program packages Mathematica or Matlab.		

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1. Real and complex numbers	 distinguish natural, integer, rational, real and complex numbers and their notation calculate with real numbers, their approximate values, and learn to estimate their values understand relations among 	 for a given number, determine the number type, its value, its value and equivalent notation, as well as learn how to represent it geometrically execute given operations

	numbers by being able to solve simple equations and inequalities - apply numbers for writing down the values of physical quantities	 with numbers algebraically and numerically, exactly and approximately determine the relation among the given numbers, set and solve a simple equation and inequality interpret a connection among the given physical quantities, as well as among their numerical values
2. Two-dimensional, three- dimensional and n- dimensional real vector space	 define and graphically represent a coordinate system on a line, in plane and in space, as well as understand the generalization to higher dimensions apply the notion of coordinate system to represent geometrical and physical relation between various quantities define analitically a notion of vector in real vector space, use various equivalent notations and be able to use operations on vectors interpret vector and its components form the engineering point of view (forces, velocity etc.) 	 represent a point or a set of points, given by their coordinate values write down the analytical expression representing a geometrical or physical relation between quantities execute given vector operations
3. Some transformations of plane and space – the notion of matrices and linear operators	 define matrix and its elements apply vectors and matrices to write down some basic transformations of plane and space: symmetry, projection, translation, rotation distinguish various types of matrices: square matrix, symmetric matrix, diagonal 	 determine columns, rows, elements, type and order of a given matrix determine the matrix representation of a given transformation, or, vice versa, determine the transformation out of a given matrix representation determine the type of a

	matrix etc.	given matrix
4. Algebra of matrices. Inverse matrix and determinant	 define operations with square matrices, be able to use these operations and compare them with number operations define the notion of inverse matrix and its state its properties define the matrix determinant for matrices of second and third order 	 execute the given matrix operations calculate the determinant of a given matrix of second or third order
5. Scalar, vector and mixed product of vectors	 geometrically define the angle between two vectors define and calculate the scalar product of vectors, and establish a relationship with the notion of angle between two vectors analitically, geometrically and physically define the vector product; learn to calculate it and use it to find the area given by two vectors define the mixed product, calculate it and use it to find the volume determined by three vectors 	 represent a relation between two vectors, regarding the angle between them write down the formulas for scalar product of vectors and for the angle between vectors, and apply them to given vectors write down the formulas for vector and mixed product of vectors, and apply these formulas to given vectors
6. Systems of linear equations and solution methods	 define the notion of a system of linear equations, and its set of solutions define and apply the matrix notation for a system of linear equations solve some simple systems by using, where appropriate, the inverse matrix method, Cramer rule or the Gauss-Jordan method calculate the determinant 	 write a matrix notation of a given linear system solve a given system using the required, or appropriate, method calculate the determinant and inverse of a given matrix, using elementary matrix operations

	and inverse of a square matrix, by using the elementary matrix operations	
7. Notion and geometrical meaning of eigenvalues and eigenvectors (not obligatory)	 define the notions of eigenvalue and eigenvector of a matrix interpret geometrically and physically these two notions determine eigenvalues and eigenvectors in concrete examples explain the special role of symmetric matrices 	 check if a given number (vector) is an eigenvalue (eigenvector) of a given matrix determine and interpret the eigenvalues and eigenvectors of a given matrix of second order
8. Notion of function, its graph and inverse function	 present the notion of a function and interpret it as an operation and notation of a relation between dependent quantities define the notion of a graph of function and the notion of a graph equation state basic properties of functions and graphical interpretion of these properties define the inverse function, its graph and sketch the connection to equation solving 	 calculate the values of a given function and represent those values as points of its graph determine the value of a given function by using its graph interpret the properties of a function if its graph is given and vice versa, represent graphically a function with specific property present a graphical solution of a given equation and estimate the solution graphically
9. Elementary functions. Functions important in engineering and natural sciences.	 define the notion of elementary function, give a list of elementary functions and their inverse functions represent graphically basic elementary functions and their inverse functions (powers and roots, exponential and logarithmic functions, trigonometric and arcus functions) 	 calculate the values of a given elementary function sketch the graph of a given basic elementary function solve a given equation (exponential, logarithmic, trigonometric etc.) exactly, as well as approximately

	 graphically interpret important properties of elementary functions (growth and decline, extremes, convexity and concavity, inflection points) solve equations related to basic elementary functions sketch the importance of applying elementary functions on engineering problems 	
10. Notion of sequence, limit of a sequence and limit of a function	 define the notion of sequence of numbers and its series, as well as the notion of limit approximately and exactly determine the limit of some important sequences define and graphically represent the limit of a function state some important limits of functions 	 determine and write down the expression for the general term of a simple sequence given by its first few terms calculate the limit of a given sequence calculate the limit of a given function
11. Notion of derivative, its geometrical and physical meaning	 present the analytical definition of point derivative of a function, as well as its functional derivative intepret the derivative physically (notion of velocity) intepret the derivative geometrically (notion of inclination) approximately determine the value of derivative by using the graph of a function use the definition of a derivative to obtain the derivatives of some simple functions (as for power or 	 using the definition of derivative, find derivatives of some basic functions, as for square root or square power using the graphical representation, estimate the relative speed of change of one quantity, as compared to the other quantity

FORM 2

	root functions)	
12. Properties of derivative. Derivatives of elementary functions	 state the properties of functional derivatives and use them to calculate the derivatives list the derivatives of basic elementary functions calculate the derivatives of basic elementary functions (power function, exponential function, sinus and cosinus functions and their inverses) 	 by using the table of derivatives, as well as the properties of the derivative operation, find the derivative of a given polynomial, a product or quotient of given elementary functions find the derivative of a function composed out of given functions from the table of derivatives
13. Linear and quadratic approximation. Taylor series	 list and apply formulas for linear and quadratic approximation of a function geometrically and analytically interpret linear approximation derive the formula for the tangent line in a point of a graph of a function, and be able to interpret it geometrically state the general formula for Taylor series of a function, and present the Taylor series for some basic elementary functions apply Taylor series to approximately calculate values of a given function 	 use the linear and quadratic approximations, as well as Taylor series, to calculate the approximate values of a given function determine linear and quadratic approximations and the Taylor series for x0=0 for the following functions: exp(x), sin(x), cos(x), 1/(1-x)
14. Increasing and decreasing functions, convexity and concavity, inflection points and their physical meaning	 interpret increse and decrease of a function, as well as local extremes, by using the notion of first derivative, and apply this interpretation to a given problem interpret convexity and concavity, as well as inflection points, by using the 	- apply to a given function

	notion of second derivative, and apply this interpretation to a given problem - distinguish necessary and sufficient conditions in terms of derivatives, for a function to have a specific property stated above	
15. Qualitative analysis of a function by using a notion of derivative.	- use the competence obtained in Teaching unit 14 to some more involved functions	

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: dr. sc. Vesna Volovšek, full professor		
2) Name of the course: Physics I		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 6) Learning outcomes at the level of the study programme: 1 Ability to apply the lows of physics		
 Explaining the physical processes and phenomena Analyzing and solving physical problems using mathematical skills (mathematical formulation of physical problems) 	 Ability to apply the lows of physics Acquiring computational skills Correlating the acquired knowledge Application of scientific methods in solving problems 	
3. Graphical representation of the laws of physics	5. Deductive and inductive reasoning	
4. Interpretation of the obtained results5. Relating the acquired knowledge in solving physical problems		

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1. Kinematics	- to describe different kinds of motion through kinematic quantities (position, velocity, acceleration)	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
2. Dynamics	 to interpret and apply Newton's lows and the lows of conservation of linear and angular momentum to establish the equation of motion to explain the relationship between different dynamic 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions

	quantities (force, linear momentum, angular momentum, impulse, torque) - to recognize some fundamental forces in nature (Gravity)	
3. Work and Energy	 to explain the relationship between work, potential and kinetic energy to interpret and apply the law of conservation of energy to derive the potential energy for some conservative forces with their grafical representation 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
4. Oscillations and Waves	 to describe simple harmonic motion and apply its equiation to different periodic motions in nature to describe different kinds of waves by means of characteristic quantities (wavelength, period, frequency, angular frequency, amplitude) 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
5. Heat and Temperature	 to explain relationship between different thermodinamic quantities (heat, temperature, pressure, volume, internal energy, entropy) through thermodynamical and statistical approach. to derive the work done in different thermodynamic processes 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Marinko Markić				
2) Name of the course: Applied Computer Sciences				
3) Study programme (undergraduate, graduate):undergraduate				
4) Status of the course: obligatory				
5) Expected learning outcomes at th level of the course (4-10 learning outcomes):	e 6) Learning outcomes at the level of the study programme:			
1. Decribe the structure and computer basic				
2. Solve simple programming problems using structured programming	 Basic of computing, programming Basic of use of databases and basic concepts of the relational and 			
 Solve simple problems applying Matlab software package 	statistical databases 3. Information retrieval through on-line			
4. Use of Mathematica in solving problematic practical tasks	computer searches			
5. Explain the concept of database and database management system				
6. Explain the formation of relational databases				
7. Apply the MS Access to work with relational database				
8. Collect information from online databases.				

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1.Programming Basic	 Explain the concept and basic properties of the algorithm Apply an algorithm flow chart Identify the program development phase 	 Apply the principles of structured programming for the development of standard algorithms Draw a flow chart of the developed algorithm-

FORM 2

	 Apply standard algorithms for: computing the mean numbers, search the smallest and the largest among the numbers, working with natural numbers (addition, multiplication, computing factorial, divisibility number with the default number), replace the contents of variables, sorting array elements (Bubble sort) - 	
2. Matlab Basic and Matlab programming	Distinguish the data types - Describe working with arrays, vectors and matrices Apply selection structures - Use data entry and printing - Write mathematical expressions with the use of arithmetic, relational and logical operator and appropriate functions, including M-functions - Apply command decisions (single, multiple if statement) - Apply repetition structures (for-end, while-end, nested) - Graphically display data - Applying commands for saving and loading data	 -Define and explain the data types in Matlab, (floating point and single and double precision numbers) - Define variables in Matlab, their distribution - Describe the definition of a series of numbers in Matlab, commands linspace and logspace, - Specify commands for drawing two-dimensional graphs in Matlab and their syntax, specify commands to draw more coordinate system or system within the same graphic windows and their syntax, - Write a program in Matlab script file which includes: data entry, use variables, the assignment statement, arithmetic operations, relational and logical operators, work with arrays, vectors and matrices, application functions, command decisions, repetition, print the results, save results to the file, draw a graph,

		Write a preamon in
3. Elementary Programming	- distinguish between	- Write a program in Mathematica including: data
in Mathematica	variables and constants	input/ouput, use variables,
	- distinguish between	use of decision, arithmetic
	symbolic and numerical	operators, relational and
	calculation	logical operators, working
	- Apply command accession,	with lists (vectors and
	entry and print data	matrices), use functions,
	- Write mathematical	command decisions,
	expressions with the use of	Repetition, graphical
	arithmetic, relational and	representation of a function or data, the use of dynamic
	logical operators and the	interaction, print the results
	corresponding function	on the screen or to a file, all
	- Apply the lists (vectors and	with the use of basic
	matrices)	commands and functions in
	,	Mathematica
	- Apply the symbolic calculation: linear algebra,	- Write a program in
	simplification of symbolic	Mathematica with the use of
	expressions, substitution	symbolic calculation in linear
	values for symbols, working	algebra, simplification of
	with user-defined functions,	symbolic expressions, substitution values for
	deferred evaluation, symbolic	symbols, working with user-
	solving algebraic and linear	defined functions, deferred
	differential equations,	evaluation, symbolic solving
	differentiation and integration	algebraic and linear
	of symbolic expressions, calculating limits of the	differential equations,
	function and development	differentiation and integration
	functions in Taylor series	of symbolic expressions, the
	-	calculation of the limit
	- Apply decisions command	function and development
	(single, multiple if statement)Apply repetition structures	functions in Taylor series - Compare result obtained
	(For, Do-While)	with a numerical calculus and
	- Apply graphical display of	the solutions obtained with
	functions and data	symbolic calculation.
		- Test program and remove
	- Use dynamic interaction (command Manipulate)	all syntax and logical errors
	(command manipulate)	
4. Relation Database	- Describe the basic concepts	- Explain the basic concepts
Concepts	of data and information	and distinguish data from information
	- Define the database and	- Explain the concept of
	database management system	database and database
		management system
	- Explain the concept of	-Describe and give an
8	1	0

5. MS Access Basic	relational database - Create a simple Entity- relationship model - Create a simple relational model - Identify the dependencies - Apply the process of normalization to the third normal form - Distinguish sequential, direct and index method of data access - Explain the basic concept - Create tables, forms, queries and reports - Modify tables, forms, queries and reports - Connect table - Handle the data in the database (view, add, delete and modify data) - Collect data (information) from the database using queries and sorting tools	example of a relational database and to compare it with the flatbed database - Analyse or draw a simple Entity-relationship diagram (Chen and Martin's view) - Analyse or develop a simple relational model - Indicate the functional dependencies in relational model - Analyse the relations and rearrange using normalization process to the default normal forms (first, second or third) - Give examples of sequential, direct and index access methods to data and to compare the advantages and disadvantages of indexing - For the given database scheme create a database in MS Access - Create forms and use them to enter (add) data into the database, browse, delete and modify data - Create simple and complex search queries - Create reports and use them to display data which are located in tables or obtained as a result of search
	from the database using	as a result of search
7. Scientific resources on the Internet	 Define basic concepts of data and information Define basic concept of a database Collect information from databases on the Internet Evaluate the relevance of the collected data 	 Apply the keywords and logical operators in searching databases on the Internet Compare the data collected from the internet with respect to their source Argue the use of the data obtained

	- Develop a critical attitude towards the source of the data collected	
8. Statistic Database	- Distinguish between data, metadata, information and knowledge	- Describe an example of design data in statistical database
	 Explain the concept of statistical database Distinguish between relational database and statistical database Specify the way of processing data 	- List the steps in knowledge discovery in data with specification of the methods of data processing

1) Course teacher: prof. dr. sc. Ivica Gusić, Full Professor / dr. sc. Miroslav Jerković, Assistant Professor		
2) Name of the course: Mathematics II		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: obligatory		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
 outcomes): 1. Apply indefinite integral to problems inverse to the derivative problem 2. Use definite integral to solve the problem of area and apply it in solving engineering problems 3. Adopt the notion of a function of several variables, its derivatives and integral, and apply it to study the relations among several dependent quantities 4. Use differential equations of first and second orders to solve mathematical and physical problems 5. Actively use the corresponding basic procedures in program packages Mathematica or Matlab. 	 Apply the indefinite and definite integrals to model an engineering problem. Apply the differential calculus of functions of several variables to model an engineering problem. Use ordinary and partial differential equations to model an engineering problem. 	

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1. Indefinite integral and computation methods.	 define the primitive function and indefinite integral of a function show competence in using the basic properties of indefinite integral, and in applying them in calculations apply methods of partial 	 for a given elementary function determine a primitive function check if a give function is a primitive function of a given function introduce an appropriate substitution to a given
	integration and substitution	integral

	I	
	- apply indefinite integral to solving some simple engineering problems	 derive the differential equation of radioactive decay and solve it by integration derive the differential equation of the vertical shot and solve it by integration
2. The area problem – definite integral. Leibnitz- Newton formula.	- establish a connection between the problem of area under curve and the notion of definite integral	- represent geometrically and estimate the value of the definite integral of a given simple function
	- interpret geometrically and estimate the definite integral for a positive, as well as for a general function	- calculate the value of the definite integral of a given simple function
	- calculate the definite integral by using the Leibnitz-Newton formula	
	- sketch and geometrically interpret the properties of definite integral	
3. Methods for calculating the definite integral. Improper integral.	- derive and apply the formula for partial integration of the definite integral	- using the method of partial integration, calculate the appropriate definite integral
	- derive and apply the formula for integration by substitution of the definite	- using the method of substitution, calculate the appropriate definite integral
	integral - define and represent graphically the improper integral	- calculate and represent graphically the improper integral of a given function
	- calculate the given improper integral	
4. Geometric application of definite integral.	 use the definite integral to calculate the area of plane domain derive and apply the 	- represent graphically, estimate and calculate the area of a plane domain bounded by given curves
	formula for volume of the rotational body	- calculate the volume of a ball
		- calculate the volume of a

		cone
5. Application of definite integral to natural sciences.	 apply the definite integral to calculate the mass, barycentre and moment of inertia of a nonhomogeneous line segment with a given mass density function explain above formulas use the definite integral to interpret the problem of a work of a line force 	 calculate the mass of a nonhomogeneous segment with a given mass density function estimate and calculate the barycentre of a nonhomogeneous segment with a given mass density function; interpret the result calculate the moment of inertia for a nonhomogeneous segment with a given mass density function calculate the work of a line force given by F(x)=-kx; interpret the result
6. Notion of a function of two variables, its graph and partial derivatives.	 define a function of two variables and apply it to the problem of a relation among three dependent quantities determine the domain of a function of two variables, and evaluate it define and calculate the partial derivatives of first and second order for a function of two variables physically and geometrically interpret the first order partial derivatives at a given point of a function of two variables 	 determine the natural domain of a given function of two variables determine partial derivatives and partial derivatives at a particular point for a given function of two variables
7. Linear and quadratic approximation of a function of several variables.	 write down the formula for linear approximation of a function of two variables and comment on analogy with the case of single variable apply linear approximation to calculate the approximate 	 determine linear and quadratic approximation for a given function of two variables determine the increment and approximate increment for a given function of two

	values	variables
	- write down the formulas for increment and approximate increment of a function of two variables and comment on analogy with the case of single variable	
	- apply the formula for the approximate increment of a function	
	- write down and apply the formula for quadratic approximation of a function of two variables	
8. Local extremes of a function of several variables.	- define the local extremes for a function of two variables and comment on analogy with single variable case	 determine the local extremes for a given function of two variables apply the local extreme criterion to solve a given
	- state and explain the necessary conditions for local extremes	minimization problem
	- apply the above criterion, by using partial derivatives of first and second order	
	- apply the above criterion to solve some mathematical and engineering problems (the minimization problem)	
9. Multiple integrals – consecutive integration.	- define the notion of definite integral for a positive function of two variables along the plane domain, and	- represent graphically the integral of a given positive function of two variables
int - b co ca on	 by using the formula for consecutive integration, 	- calculate the integral of a given function of two variables, over a given plane domain
	calculate the definite integral on the given domain	- introduce the appropriate polar substitution in a given
	- define and calculate the definite integral of a general function	integral

	- apply polar coordinates to	
	calculate the definite integral of a function of two variables.	
10. Application of the multiple integral.	- interpret the distribution of mass for a nonhomogeneous plane domain using the mass density function	 calculate the mass of a given nonhomogeneous plane domain estimate and calculate the
	- sketch the derivation of the formula for the mass of a nonhomogeneous plane domain using its mass density function	barycentre of a given nonhomogeneous plane domain
	- apply formulas for determining the mass and barycentre of a nonhomogeneous plane domain	
11. The notion of ordinary differential equation, integral curve and initial conditions.	- state the general form of ordinary differential equations of first and second order	 determine the order of a given differential equation check if a given function represents a solution of a
	- define the general and particular solutions	given differential equation - find and represent
	- solve some simple differential equations and graphically represent the solution via integral curves	graphically the general solution of a given simple differential equation
	- define initial conditions and their role	
12. Application of ordinary differential equations.	- state and solve the Cauchy problems of first and second	- derive and solve the Cacuhy problem of cooling (heating)
Cauchy's problem.	order and interpret them physically	- derive and solve the Cauchy problem of linear motion with constant force applied
		- derive the Cauchy problem of a oscillation of a particle along a line
13. Methods for solving some types of first and second	- apply the method of	- solve a given differential equation of first or second

order ordinary differential	variable separation	order
equations.	- state and solve homogeneous and nonhomogeneous linear differential equation of first order	- solve the Cauchy problem of a oscillation of a particle along a line; interpret the solution
	- state and solve homogeneous and nonhomogeneous linear differential equation of second order with constant coefficients	
14. The notion of partial differential equation, its solution and initial and	- state the general form of partial differential equations of first and second order	
boundary conditions.	- define and physically interpret initial and boundary conditions	
15. Application of partial differential equations (not obligatory).	- state the differential equations for vibration of a string and heat conduction, together with the corresponding initial and boundary conditions	

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: dr. sc. Vesna Volovšek, full professor		
2) Name of the course: Physics II		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:1. Ability to apply the lows of physics	
 Explaining the physical processes and phenomena Analyzing and solving physical problems 	 Acquiring computational skills Correlating the acquired knowledge 	
using mathematical skills (mathematical formulation of physical problems)	4. Application of scientific methods in solving problems	
3. Graphical representation of the laws of physics	5. Deductive and inductive reasoning	
4. Interpretation of the obtained results		
5. Relating the acquired knowledge in solving physical problems		

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1. Electrostatics	- to describe different kinds of electric phenomena and interactions through electrostatic quantities (charge, Coulomb force, electrostatic energy, potential and voltage, electric current)	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
2. Magnetostatics	- to explain the origin of magnetic phenomena and interactions and to establish the conections between different quantities (magnetic field, electric current, Lorentz force)	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions

3. Alternating electric and magnetic fields	 to explain the relationship between alternating electric and magnetic fields to describe the applications (alternating current, electromagnetic waves) 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
4. Optics	- to explain and apply the laws of geometric and wave optics to different optical instruments (mirrors, lenses, gratings)	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions
5. Fundamental principles of quantum physics	 to explain differences between classical and quantum quantities to apply quantum mechanical description to some phenomena in micro world 	 Explaining physical concept Mathematical formulation of physical problem Describing the model and its restrictions

2) Name of the course: Analytical Chemistry					
3) Study programme (undergraduate, graduate): undergraduate study – Ecoengineering					
4) Status of the course: obligatory					
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:				
 To define analytical system. To relate principles of chemical equilibrium with methodology of analysis in environmental. To apply methods of selective separation of inorganic anions and cations in chemical analysis of environment and environmental processes. To apply methods of gravimetric analysis in chemical analysis of environment and environmental processes. To apply methods of volumetric analysis in chemical analysis of environment and environmental processes. To apply methods of volumetric analysis in chemical analysis of environment and environmental processes. 	 To apply basic knowledge of chemistry. To develop ability of technologies' analyses. To develop basic laboratory skins and define working rules in chemical laboratories To track and monitor environment pollutions by measuring chemical indicators. To demonstrate methodology of analytical process. 				

Teaching unit	Learning outcomes	Evaluation criteria	
1. Analytical system	- To define analytical system	- To define analytical method.	
		- To determine analytical signal and calculate analytical result.	
		- To express significant digits.	

		- To differentiate accuracy and precision of analytical methods.
2. Qualitative chemical analysis in ecoengineering	 To relate principles of chemical equilibrium with methodology of chemical analysis of environment and analysis of environmental processes. To apply methods of selective separation of inorganic anions and cations in chemical analysis of environment and analysis of environmental processes. 	 To compute solution's pH value. To compute conditions of inorganic salts precipitation. To compute conditions of complex formation To compute redox potential To plan systematic analysis of cations and anions To compute possibility for executing the planed systematic analysis To apply principles of dissolution of inorganic salts
3. Quantitative chemical analysis in ecoengineering	 To relate principles of chemical equilibrium with methodology of chemical analysis of environment and analysis of environmental processes. To apply methods of gravimetric analysis in chemical analysis of environment and environmental processes. To apply methods of volumetric analysis in chemical analysis of environment and environment an	 To plan the steps of gravimetric analysis To classify contaminations of precipitate To explain how to prevent contaminations of precipitate To describe possibilities of treatment for purification of contaminated precipitate To differentiate properties of precipitate according tothe particle size To compute result in gravimetric analysis

	- To plan steps in volumetric analysis
	- To differentiate end- point and equivalence point in titration
	- To select indicator and method for detection of titration end-point.
	- To compute result of volumetric analysis
	- To compute all points on titration curve

FORM 2

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Marija Vuković Domanovac, PhD		
2) Name of the course: Microbiology		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: obligatory		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. to define the bacteria, eukaryotes and Archaea 2. to give examples of structurally diverse	 isolate and identify microorganisms present in the selected ecosystem analyze the conditions for optimum growth of microorganisms isolated 	
 a. to give examples of structuring diverse microorganisms and sort microorganisms in their energy metabolism and carbon sources b. to choose the method of cultivation, enrichment and prevention of microbial 	3. adapted microorganisms for faster decomposition of pollutants in the environment or the synthesis of specific products	
growth 4. to explain the different circular path of the substance on Earth involving microorganisms	4. select micro-organisms and apply them in engineering environment, chemical and related industries	
5. to choose a method of removing pollutants based on the biogeochemical cycling of matter on Earth	5. apply the models of growth of microorganisms and evaluated for their effectiveness	

Teaching unit	Learning outcomes	Evaluation criteria
1. The molecules of living systems	 to list of which parts macromolecules consist, indicate and sketch the chemical bond to explain the function of macromolecules in living organisms 	 explain the structure and function of macromolecules compare the differences in the structure and function of two nucleic acids
2. The microscope, study of microorganism's structure	- to indicate parts of the microscope and explain the structure of the lens and the power of their separation	 recognize optical and mechanical parts the microscope describe and sketch default

	- to outline the structure of microbial cells	microorganism observed under the microscope
	 to prepare preparations of microorganisms for microscopy and determine the size of the cells to distinguish easily from a complex painting of bacterial 	 perform a calibration of the lens, calculate the magnification factor and measure the size of the observed cells explain the difference
	cells	between gram-positive and gram-negative bacteria
3. The structure and function of prokaryotic and eukaryotic cells	 to describe the structure and function of prokaryotic cells to explain the mass transfer through the membrane to describe the formation of spores and pigments to identify a group of gramnegative aerobic and faculty anaerobic rods and grampositive cocci to compare the structure of prokaryotic and eukaryotic cells to describe the structure Arhaee to indicate characteristics of fungi and describe ways of reproduction to identify representatives of certain grades of fungi, protozoa, algae and lichen 	 explain the function and chemical structure of certain parts of the bacterial cells indicate difference between passive and active transport across membranes analyze the impact of environmental factors on the formation of spores and bacteria in pigment explain the characteristics of the industrial and ecologically important gram- negative and gram-positive bacteria to outline and label parts of prokaryotic and eukaryotic cells summarize the differences between the bacteria, eukaryotes and Arhaee describe the differences in sexual, asexual and vegetative propagation of fungi
		- describe the characteristics of the given group of fungi, protozoa, algae and lichens and point out their importance in industry and environment

4. Enzymes, reaction mechanisms, energy metabolism, and pathways of production and utilization of energy	 to define the function of enzymes, explain the chemical structure and structure of the enzyme to outline scheme of enzymatic reactions to select the factors that inhibit the enzymatic activity to explain the oxidation- reduction reaction of coenzyme NAD⁺ to describe the catabolism of macromolecules, aerobic and anaerobic respiration and 	 identify parts of enzymes and write properties of the enzyme indicate which part of the enzyme catalyzes the reaction and sketch the course of enzymatic reactions to a given substrate sketch and explain how is the inhibition of the enzyme expressed by equation oxidation-reduction reaction of coenzyme NAD⁺ write the material and
	fermentation process features	energy balances for the given examples of catabolism, respiration and fermentation
5. Metabolic differences between microorganisms, growth, and control the growth of microorganisms	 to classify the group of the microbial based on sources of carbon and energy, the physical and chemical requirements for growth to describe the growth of microbial cells, and growth inhibition 	 recognize mechanism of metabolic activities of microorganisms specified sketch curve of growth of microbial cells and explain each phase of growth

1) Course teacher: Zvonimir Glasnovic, Associate Professor 2) Name of the course: Fundamentals of Electrotechnics 3) Study programme (undergraduate, graduate): Chemical Engineering, **Applied Chemistry, Environmental Engineering** 4) Status of the course: Undergraduate 5) Expected learning outcomes at the 6) Learning outcomes at the level of level of the course (4-10 learning the study programme: outcomes): 1. Apply the basic principles of electrical 1. Analyze complex circuits; engineering to solve basic circuits; 2. Apply the methodology of Electrical and 2. Apply the analogue electronic circuits in Electronics in the development of chemical chemical engineering problems; engineering processes; 3. Apply digital electronic circuits (CPU, 3. Use the systems and methods for sensors, actuators etc.) and a digital computer monitoring and controlling of the to manage complex technological processes technological processes; in chemical engineering; 4. Identify techniques for protection of 4. Apply a systematic approach to solving electric shock; problems of electrical engineering and 5. Manipulate with electronic electronics in chemical engineering. instrumentation.

Teaching unit	Learning outcomes	Evaluation criteria
1. Basic principles of electrical engineering and electronics	 Explain the principle representation engineering systems (diagram); Explain the concept of electric current and the effects that it causes; Explain the concept of density of electric current; Explain the concept of electric voltage and methods for its preparation; Explain the concept of 	 Sketch basic block diagram of electrical system; Solve relationship between current, charge and time in battery; Calculate load of electric conductors; Calculate four characteristic values of resistor; Calculate any of the required values of electrical resistor.

FORM 2

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Ivica Gusić			
2) Name of the course: Basics of Environmental Statistics and Numerical Methods			
3) Study programme (undergraduate, graduate): Undergraduate			
4) Status of the course: Obligatory			
 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 1. Apply principles from descriptive statistics in data analysis 2. Outline basic principles from probability theory 3. Outline and apply basic knowledge about continuous and discrete random variables. 4. Apply principles and techniques of estimations and tests in making decision about population using sample. 5. Apply procedures from programme package Excel. 	 6) Learning outcomes at the level of the study programme: 1. Apply descriptive statistics to analyse results of measurements 2. Apply probability theory to model problems in engineering 3. Apply statistics to make decision in situations from engineering 		

Teaching unit	Learning outcomes	Evaluation criteria
1. Elements of descriptive statistics	 distinguish between population and sample recognize and distinguish discrete and continuous statistical data group and present statistical data determine various data means and measures of dispersion 	 recognize in given situations the type of statistics data and sample - group given data, determine rang, frequencies and relative frequencies, arithmetic mean, mod, median, quartiles, variance and standard deviation
2. Notion of the probability, the conditional probability, the independence	 recognize elementary events and events - calculate probability in simple situations -recognize and apply conditional probability of an 	 given an experiment, determine elementary events, describe events and calculate probability -apply independence under a suitable circumstances.

	event - recognize and apply	
	independence in successive	
	-	
3. Notion of the random variable (discrete and continuous). Expectation and variance	repetition of an experiment -define random variable and its distribution -distinguish between discrete and continuous random variable -interpret probability as the area under the graph of density function -calculate probability, expectation and variance -interpret and sketch the connection with descriptive	 determine the distribution of a given random variable given the density function, determine the function of distribution, expectation and variance
	statistics	
4. Binomial and Poisson distribution	 -define the binomial distribution recognize the binomial distribution and apply it in modelling engineering problems define the Poisson distribution recognize the Poisson distribution and apply it in modelling engineering problems 	-recognize in concrete situations the binomial random variable, determine its range and distribution -apply the Poisson distribution in suitable situations
5. Exponential and Normal distribution	 define the exponential distribution and recognize it in concrete situations apply the exponential distribution in modelling engineering problems define the normal distribution and recognize it in concrete situations apply the normal distribution in modelling engineering problems interpret and apply the three-sigma rule 	 -write down the density function and the distribution function of the exponential variable, and present its graphs -calculate probability of a concrete exponential distribution -write down the density function of the normal distribution and present the graph -apply the normal distribution in given situations
6. Estimation of parameters. Confidence interval.	- estimate the arithmetic mean and variance of a population by arithmetic	- given a sample, estimate the arithmetic mean and variance of the population

	1	· · · · ·
	mean and variance of a	-given a sample, estimate
	sample	confidence intervals for
	- define confidence intervals	expectation and variance of
	for expectation and variance.	the population
	- determine confidence	
	intervals for expectation and	
	variance (by using an	
	appropriate statistical	
	package)	
7. Basic of hypotheses	- outline procedures for	-test a given hypothesis under
testing, t-test and F-test	testing hypothesis	various alternative hypothesis
	- explain the notion of the	and various significance
	significance level	levels
	-apply t-test and F-test (by	
	using an appropriate	
	statistical package)	
8. Chi-square test	- describe Chi-square test	-sketch the procedure of Chi-
	- apply Chi-square test (by	square test for various
	using an appropriate	distributions
	statistical package)	
9. Least square method.	- sketch the problem of	-given a statistical data,
Correlation coefficient	adjustment of experimental	determine regression
	data to theoretical ones	coefficients (directly and by
	- describe and apply the least	using an appropriate
	square method for linear	statistical package)
	relationship	-given a statistical data,
	- calculate the correlation	determine and comment the
	coefficient	correlation coefficient
10. Interpolation of	- sketch the problem of	- given the points, determine
functions	interpolation of the function	the corresponding Lagrange
	and its solution	polynomial (by using an
	-explain and apply the	appropriate statistical
	Lagrange interpolation	package)
	polynomial	- given the points determine
	-explain and apply the cubic	the corresponding cubic
	spline	spline (by using an
	spine	appropriate statistical
		package)
11. Approximation of		
functions (optional content)		
12. Approximate		
differentiation and		
integration.	alzetah the problem of	avalain gaomatricallar a
13. Approximate solution of	-sketch the problem of	-explain geometrically a
equations with one unknown	approximate solution of	given equation and its
(optional content)	equations	solutions

	- explain and apply the	-given an equation, determine
	tangent method	approximate solution
	-explain and apply the	(directly and by using an
	iteration method	appropriate statistical
		package)
14. Approximate solution of	-sketch the problem of	-geometrically interpret a
system of equations with	approximate solution of	given system of two
more unknowns	system of equations	equations
	-explain and apply the	- given a system of two
	Newton method	equations, apply the Newton
		method
15. Approximate solution of	-graph the Cauchy problem	graph a given Cauchy
ordinary an partial	y'=f(x,y), y(x0)=y0 and its	problem
differential equations	approximate solution	- given a Cauchy problem,
	-explain the Euler method	determine the solution by
	and the Runge-Kutta method	using the Euler method and
		the Runge-Kutta method

FORM 2

University of Zagreb Faculty of Chemical Engineering and Technology

2) Name of the course: Organic Chemistry			
3) Study programme (undergraduate, graduate): undergraduate			
4) Status of the course: basic			
 4) Status of the course: basic 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): Identify the functional groups in the molecules and define a class of compounds Apply the IUPAC rules for naming organic compounds Analyze the structure of compounds with carbon, bonding in organic molecules and structures of molecules in the space Define basic types of organic reactions and explain the basic reaction mechanisms with the recognition of reactive reaction intermediates Define the basic reactions and synthesis reactions involving alkanes, alkenes, alkynes, alcohols, aromatic compounds, carbonyl compounds, carboxylic acids and their derivatives Distinguish the reactivity of organic compounds according to the structure and connect with the corresponding reaction mechanisms Apply the basic principles of modern organic chemistry and literature or our own experimental data to solve chemical engineering problems Prepare, isolate, purify and identify some 	 6) Learning outcomes at the level of the study programme: 1. Adopt a basic knowledge of mathematics, physics, chemistry and biology 2. Perform basic laboratory procedures in physical, chemical and biochemical labs 3. Safely handle with chemicals and waste materials, their management and re-use 4. Collect, identify and interpret the information about samples or processes 5. Manage and plan the time 		

criteria			
Teaching unit	Learning outcomes	Evaluation criteria	
1. Carbon compounds and chemical bonds; Class of compounds - functional groups	 analyze the structure of carbon compounds, bonding in organic molecules and structures of molecules in space identify the functional groups in the molecules and define a class of compounds apply the IUPAC rules for naming organic compounds 	 identify the functional groups in the molecules and define a class of compounds identify, define and distinguish the substitution, addition, elimination and rearrangement reactions 	
2. Alkanes and cycloalkanes	- apply conformational analysis of alkanes and cycloalkanes	- explain the conformation of alkanes and cycloalkanes	
3. Stereochemistry	 define and designate isomers explain and apply the CIP rules to determine the absolute configuration 	- determine the absolute configuration of organic compounds by using CIP rules	
4. Ionic reactions	 distinguish a nucleophilic substitution reaction according to the kinetics of the reaction mechanism and stereochemistry explain when a nucleophilic reactions are in competition with an elimination reaction 	 explain SN1 and SN2 nucleophilic substitution reactions vs. elimination reactions explain stereochemical outcome of nucleophilic substitution reaction 	

5. Alkenes and alkynes, alcohols and ethers, organometallic compounds, aromatic compounds, aldehydes and ketones, carboxylic acids and their derivatives, amines, hydrocarbons	 define the basic types of organic reactions explain the basic reaction mechanisms and identify reactive reaction intermediates define aromatic and nonaromatic compounds distinguish the reactivity of organic compounds depending on the structure and connect with the appropriate reaction mechanism 	 apply the IUPAC rules for naming organic compounds determine configuration by using CIP rules define and explain the basic types of organic reactions and their mechanisms and identify reactive intermediates reaction analyse and apply the chemical transformations and mechanisms for alkanes, alkenes, alkynes, alkyl halides, alcohols, aromatic and carbonyl compounds prepare, isolate, purify and identify some
		representatives of organic compounds

1) Course teacher: Krešimir Košutić (Full Professor)			
 2) Name of the course: Physical Chemistry 3) Study programme (undergraduate, graduate): The undergraduate study of Environmental engineering 			
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:		
outcomes): 1. Describe and explain the basic laws of physical chemistry related to gases, thermodynamics, phase equilibria, chemical balance, surface phenomena, electrochemical	1. basics of mathematics, physics, chemistry and biology		
	2. basic laboratory skills and working standards in physical, chemical and biochemical labs		
equilibrium and chemical kinetics 2. To apply knowledge of mathematics and	3. time planning and management		
derive equation (which clearly describe the physical phenomenon under consideration)	4. collection, identification and interpreting of the information about samples or processes		
 Prepare and make laboratory experiments Analyze and interpret the results of experiments Prepare laboratory reports 	5. methodology of theoretical interpretation of experimental results		
	6. monitoring and recording of environmental pollution by measurement of physical and chemical parameters and their systematic recording and documenting		
	7. analysis, synthesis, optimization and modelling of the comprehensive technologies which generate minimum waste and apply close production cycle strategy		

Teaching unit	Learning outcomes	Evaluation criteria
1.The properties of gasses	 Describe the gas laws and display them in the PVT diagram Implement the equation of state of an ideal gas based on 	Analyze and interpret p-V-T diagrams Demonstrate the skill of mathematical computation parameters in equations of

	thermodynamic and kinetic- molecular approach - Derive the van der Waals equation	state - Explain the difference between ideal and real gases
25. Thermochemistry and thermodynamics	Describe the first, second and third law of thermodynamics and thermochemical laws (Hess' law, Kirchhoff 's Law) -Distingvish and define the heat capacity at constant pressure and constant volume - Distinguish and define the the state function of internal energy, enthalpy, entropy and Gibbs energy - Describe the spontaneity and reversibility of process - Implement the Gibbs energy dependence on pressure and temperature - Prepare and make a laboratory experiment: Calorimetry: Determination of the heat of reaction - Calculating process measurement data and interpret the results of the experiment and write a lab report	 Explain the meaning of basic thermodynamic concepts and principles Demonstrate skill application of thermodynamic and thermal laws and available thermodynamic data when calculating the change of internal energy, enthalpy, entropy and Gibbs energy Interpret the steady state isolated system and closed system Derive Gibbs energy dependence on pressure and temperature
67. Phase equilibria	Describe the phase equilibrium in one- component, binary and ternary systems by phase diagrams and equations - Derive Clapeyron and Clausius Clapeyron equation, Rauoltov law; Henry's law, Nernst distribution law and van't Hoff equation for osmotic pressure - Prepare and make a laboratory experiment: boiling point diagram and Nernst distribution law - Calculate and interpret	Analyze and interpret the phase diagram for simple, one-component systems -Demonstrate skill computation and application of Clapeyron and Clausius- Clapeyron equation and Augustus formula - Demonstrate skill graphic data processing -Analyze and interpret a balance liquid-vapor distillation process and the two-component system through diagrams boiling - An experimental determine

	eksperimental data and write lab report	the boiling diagram and define system (Zeotropic / azeotropic) - define conditions of phase equilibria, explain and interpret mathematical derivation Clapeyron and Clausius Clapeyron equation, Rauolt's law; Henry's law, Nernst' law and van't Hoff equation for osmotic pressure
8. Chemical equilibrium	 -Describe the chemical equilibrium in the conditions of constant pressure and temperature using the Gibbs energy, derive thermodynamic equilibrium constant - Describe the response of equilibria to temperature and pressure - Derive van't Hoff reaction isobars - Describe the homogeneous and heterogeneous chemical equilibria 	Compute equilibrium constant in the examples of homogeneous and heterogeneous equilibrium - Analyze and interpret the Haber Bosch synthesis of ammonia, optimize process parameters of pressure and temperature
9. Surface phenomena: surface tension and adsorption	Describe the phenomena at the interface: solid-gas, solid- liquid and liquid-gas - Define the surface tension and derivem Gibbs adsorption isotherm - Describe and distinguish the surface-active and non-active substances -describe surface films - Define the phenomenon of adsorption and factors affecting the adsorption and adsorption equilibrium, identify the types of adsorption isotherms - Derive Langmuir isotherm - Prepare and make a laboratory experiment: adsorption	 Explain importance of surfactants and their application in practice Recognize the importance of experimental conditions determining the adsorption isotherm, Freundlich isotherm parameters interpret Demonstrate skill computation and application Frundlichove, Langmurove and BET isotherms

	- Calculate and interpret measurement data and write the Freundlich adsorption isotherm and write a lab report	
1012. Electrochemistry: the conductivities of electrolyte solution, equilibrium electrochemistry	 Describe conductivity of electrolytes and distinguish strong from weak electrolyte, define I and II. Kohlraush' law Derive an Ostwald's law Define the concept of activity Explain the Debye-Hückel theory of strong electrolytes Describe the equilibrium of electrode-solution Derive the thermodynamic expression for the electrode potential Define the electromotive force Nernst equation Prepare and make a laboratory exercise of electrolyte conductivity and EMS Calculate measurement data and interpret the results of the experiment, and write a lab report 	 An experimental determine the conductivity of strong and weak electrolytes An experimental determine electrode potential and electromotive force (EMF) Demonstrate skill calculating molar conductivity, degree of dissociation, activity coefficients, electrode potentials Explain the relationship between EMS and the Gibbs energy and utility measurements EMS Recognize the importance of cell production as the most efficient energy converters
1315. The chemical kinetics	Define the rates of a chemical reaction, and the factors that affect the rate of chemical reactions - Define the reaction order - Describe the methods for determining the reaction rate constants and reaction order - List reactions to the kinetic mechanism of the elementary and complex - describe the kinetics of reverse,parallel, and consecutive reactions - describe the temperature dependence of reaction rate	Explain the importance of chemical kinetics, the rate of chemical reactions and impact to the rate of the reaction using catalysts, inhibitors and retardants - Experimentally determine rate constants, reaction order and interpret the influence of temperature on the rate constant - Demonstrate skill computing - give example: Chapman model of kinetic mechanism of depletion of ozone in the

(Arrhenius equation)	stratosphere
- Describe the theory of	
transition state (activated	
complex)	
- Define the basic concepts of	
catalytic reaction	
Prepare and make a	
laboratory experiment:	
Decomposition of H2O2	
- Calculate measurement data	
and interpret the results of the	
experiment, and write a lab	
report	

phenomena) for estimation

1) Course too show Assis Drof Verreglay Žičely DhD				
1) Course teacher: Assis. Prof. Krunoslav Žižek, PhD				
2) Name of the course: Transport Phenomena				
3) Study programme: Undergraduate study programme Environmental Engineering				
4) Status of the course: Requi	red			
5) Expected learning outcome of the course (4-10 learning o		6) Learning or study program	utcomes at the level of the nme:	
 Get acquainted with transport phenomena (momentum, heat and mass transfer), and with conservation laws they involve. To define the effects of flow regime (that is 		1. Gaining of fundamental knowledges regarding core engineering courses.		
		2. To adopt chemical engineering methodology.		
mass transfer. 3. To understand fundamen	hydrodynamic conditions) on heat and mass transfer.3. To understand fundamental laws and		kills for a lab work and for nterpretation of environmental	
equations at macro-sca		data.	1	
 phenomenon, and to apply them (regarding the mechanism) for estimation of heat and mass properties in considered hydrodynamic system. 4. To utilize the concept of transport phenomena analogy (momentum and heat transfer, momentum and mass transfer) for quantifying transport coefficients. 		1	ng and management. he aptitude for individual and	
7) Teaching units with the co	rresponding lea	arning outcome	s and evaluation criteria	
Teaching unit	Learning outo	comes	Evaluation criteria	
	- to define terms necessary for understanding and description of processes with immanent transport		- distinguish the mechanisms of transport phenomena	
1. Introduction to transport phenomena fundamentals			- define basic equations that are descriptors for processes with occurring transport phenomena	
-		omentum, heat	- differ Newton and non- Newton fluids and summarize model equations that are used as their descriptors	
2. Momentum transfer	- to memorize and to adopt conservation laws regarding		- use conservation laws (regarding fluid flow phenomena) for estimation	

	fluid flow phenomena - to define the structure and birth of hydrodynamic boundary layer - to understand fundamentals of fluid flow phenomena - to recognize characteristic cases (processes) regarding momentum transfer and to apply congruent equations	of pump power required for liquid transport in a pipeline with a complex design - define the effect of flow regime (that is hydrodynamic conditions) on the structure of boundary layer - determine flow velocity in a pipe (mainly circular tube), sketch velocity distribution and relate maximum and mean (average) flow velocity for both laminar and turbulent flow in pipes
3. Heat transfer	 to define and to differ mechanisms of heat transport /heat transfer modes (heat conduction, convection, radiation) to use equations for stationary and non-stationary heat conduction to define the effect of hydrodynamic conditions on heat transfer by forced convection in pipes to summarize the concept and basic laws regarding heat transport by radiation 	 explain the criterion for detection and differing mechanisms for heat transport define driving force of the process, the area of heat exchange, the overall heat transfer coefficient and calculate heat flow regarding various process conditions (flow regimes) detect the effect of hydrodynamic conditions on heat transfer reveal the concept for defining of various dimensionless numbers and to adopt their meaning explain Planck, Stefan- Boltzmann and Kirchhoff radiation laws
4. Mass transfer	 to memorize and to differ mechanisms of mass transport to use equations for estimation of intrinsic property of a system for each 	 outline usage of Fick's law of diffusion calculate mass flow regarding various process conditions detect the effect of

	mass transfer mechanism	hydrodynamic conditions on
	- to know methods for estimation of heat and mass transfer coefficient	mass transport - apply appropriate correlations and differential equations to estimate the mass transfer coefficient
5. Analogies of transport phenomena (momentum, heat and mass transfer)	- to solve practical problems of detecting relevant heat and mass transport properties by using concept of Reynolds and Chilton-Colburn analogy	- by knowing the momentum transport (fluid flow phenomena) property estimate the heat and mass transfer properties (coefficients)

FORM 2

University of Zagreb Faculty of Chemical Engineering and Technology

2) Name of the course: Environmental Protection3) Study programme - undergraduate: Environmental Engineering		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
 to explain the composition and basic processes in the atmosphere, hydrosphere and lithosphere, and the impact of different types of pollution on the abiotic and biotic resources to apply the principles of mathematics, physics, chemistry and microbiology in monitoring and analyzing the distribution of contaminants in water, soil and air to explain and compare the systems of water treatment and wastewater treatment, explain the systems for processing solid waste and treatment of harmful gases to outline a simple scheme of the process of processing pollutants to apply laws and regulations related to environmental protection 	 to identify the problems in the environment (water, soil, air) and apply theoretical knowledge to solve problems to apply methodology of chemical engineering and environmental engineering in solving problems in the environment and in industry to choose simple processes and process equipment for treatment the pollutants in waste streams to assess how designed process affects on the global environment to analyze the impact of new technologies, environmental concerns and public opinion on the legislation 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Ecosystems, flow of substances in the environment, population and demographic changes	 to describe the flow of matter and energy in the biomes to explain the transport and transformation of substances in the environment to analyze the rate of 	 illustrate the flow of matter and energy in the biomes and state the energy efficiency describe and sketch the cycles of substances in the environment solve the growth rate and

growth of the human

University of Zagreb Faculty of Chemical Engineering and Technology

the doubling time of the

level for a given group of

population in different parts human population applying differential equation of the world - to distinguish the 2. Classification of water. - explain the importance of characteristics of rivers, lakes the thermocline and label it pollution of water sources, and oceans waste water and waste water on the diagram of vertical - to select and apply profile of the water column treatment appropriate process to - describe mechanisms of remove contaminants from filtration and adsorption, and groundwater write mathematical - to analyze the chemical expressions that describe the composition of the waste adsorption isotherm water - explain the composition of waste water and purpose of - to select and apply waste water treatment, and appropriate process and point out the consequences of process equipment for waste discharge of untreated water water treatment in the receivers - outline the process of wastewater treatment and set up the mass balance - explain factors which 3. The soil as a natural - to describe the formation of influence the formation of phenomenon, the use of soil soil and identify types of soil and soil pollution, solid waste soils - summarize the mechanisms management - to analyze the impact of of distribution of pesticides in over-use of pesticides the environment, and - to explain and differentiate procedure of their removal the procedures for solid waste from the environment management - select the appropriate disposal procedure for a given type of solid waste - indicate the chemical 4. The atmosphere and the - to describe the layers of the composition of the movement of air masses, the atmosphere and explain the atmosphere, and sketch the sources of air pollution and movement of air masses layers of atmosphere the removal of harmful gases - to identify the sources of - explain the difference pollution in the atmosphere, between stationary and and specify process mobile sources of pollution, equipment for treatment of and select the procedures to flue gas prevent emissions - calculate the overall noise - to indicate the sources and

methods for noise

FORM 2

5. Noise, light pollution,

thermal pollution and

radioactive contamination	measurement, and explain the	machines, and select
	implementation of noise	equipment for noise
	protection	reduction
	- to identify sources of light	- describe the impact of light
	pollution and choose the	pollution on the environment,
	proper illumination	and define the type of
	- to analyze the sources of	illumination for a given space
	pollution of thermal power	- describe the impact of
	plants, and select the	untreated pollutants from
	treatment processes for	power plants on the
	removal of pollution	environment, and apply
	- to describe the application	proper process for removal of
	of radioactive substances, and	thermal pollution
	differentiate types of	- list the sources of radio-
	radioactive waste	active radiation, sketch and
	- to explain the methods of	describe the types of
	disposal of radioactive waste	radiation and their impact on
		environment
		- select a disposal procedure
		for a given radioactive waste

1) Course teacher: Assoc. Prof. Jasna Prlić Kardum, PhD Assoc. Prof. Gordana Matijašić, PhD		
2) Name of the course: Fluid Mechanics		
3) Study programme (undergraduate, graduate): Undergraduate, Environmental Engineering		
4) Status of the course: Required		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
 outcomes): 1. The ability to identify and describe rheological behavior of fluids. 2. Apply fundamental knowledge of fluid statics and dynamics for compressible and incompressible fluids. 3. The ability to choose and apply adequate equipment for fluid transport. 4. Apply fundamental principles of fluid mechanics to solve problem s in two-phase flow regime. 	 The ability to apply chemical engineering methodology. The ability to apply basics of fundamental engineering knowledge. The ability to apply methodology of theoretical interpretation of experimental results. The ability for critical analysis and solving of environmental problems. The ability to work both independently and in multidisciplinary teams. 	
5. Ability to analyze open channel flows		

Teaching unit	Learning outcomes	Evaluation criteria
1. Rheological behavior of fluids	 Define the basic terms of fluid mechanics Identify rheological behavior of fluid 	 Define fluid concepts, continuum hypothesis and properties of fluid Name the forces in fluids Sketch rheological diagrams Identify rheological equations depending on rheological behavior

2. Fluid statics	- Define the basic terms of fluid statics	- Describe hydrostatic pressure
	- Describe Euler equation	-List and describe the mode
	- Understand the manometer principle of operations	of hydrostatic manometers - Calculate a liquid level in a tank
3. Dynamics of incompressible fluids	- Understand the principles of continuity momentum and energy as applied to fluid motions	- Recognize and describe these principles written in form of mathematical equations
	- Describe flow equations - Understand laws for non-	- Calculate velocity distribution of Couette flow
	newtonian fluids	- Define meaning of Navier- Stocks equation
		- Apply Navier-Stocks equation to analyze problems
		- Define flow, velocity distribution and pressure drop for non-newtonian fluid flow
4. Fluid transport	- Define fluid motions	- Define cavitation conditions
	through narrow orificesList and classify types of pumps	- Derive equation and calculate the required time for tank discharge
	- Compute the branched pipeline	- Outline characteristics of pumps
		- Explain selection criteria and pump design
		- Calculate the pressure drop and the pump power for fluid transport through the branched pipeline
5. Dynamics of compressible flow	- Describe characteristics of compressible fluids	- Apply conservation laws for compressible fluids
	- Explain isothermal flow of ideal gas in horizontal pipe	- Evaluate head loss for the isothermal fluid flow
6. Dynamics of heterogeneous system	- Analyze characteristics of two-phase flow	- Predict and describe flow regimes in gas-liquid system

- Evaluate pressure drop for two-phase flow

- Describe hydraulic transport of heterogeneous systems

	- Categorize homogenous and heterogeneous systems
7. Open channel flow	Describe start floor

		 Define factors affecting rheological behavior Explain pneumatic transport
7. Open channel flow	- Describe steady state flow in open channel	- Distinguish uniform and non-uniform flow
	 Define types of flow in open channel Understand the phenomena of hydraulic jump 	 Discuss hydrodynamic laws for the flow through granular layer Define conditions and critical velocity for hydraulic jump to occur

FORM 2

Г

FORM 2

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Associate Prof. Dragana Mutavdžić Pavlović, Associate Prof. Stjepan Milardović, and Assistant Prof. Tatjana Gazivoda Kraljević		
2) Name of the course: Environmental Chemistry		
3) Study programme (undergraduate, graduate): Undergraduate, 2 nd year		
4) Status of the course: required		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level the study programme:		
outcomes 1. Explain the way for metal chelates forming by means of natural existed ligands (humic and fulvic acid) and with artificial	1. Monitor and observe environmental pollution by measuring chemical quantities and their systematic recording and documentation	
(pollutions) ligands as polyphosphates, EDTA, NTA, citrates etc.	2. Collect, determine and interpret information about the sample	
2. Calculate ion metal concentration in equilibrium with metal chelates complexes at different pH.	3. Solve problems in the field of environmental protection	
3. Calculate ion metal concentration in solutions containing hydroxide, sulphides and carbonates at different pH.	 4. Apply the methodology of analytical procedure 5. Manager and plan the time 	
4. Use the Purbeix diagram in design of chemical processes for different water treatments.	5. Manage and plan the time	
5. Explain metals cation measurements by ion selective electrodes and by stripping voltammetry.		
6. Explain the basic processes in the biosphere and the components interaction and photochemical processes in the environment.		
7. Apply principles of "green" chemistry in basic organic reactions and modern organic synthesis.		
8. Define access to environmental analysis.		
9. Recognize the sample from the environment (water, soil, air) and choose the method of analysis depending on the investigated pollutants.		
10. Distinguish approach to the analysis of		

FORM 2

trace pollutants in the environment (soil, water, air) from the analysis of macro ingredients.

Teaching unit	Learning outcomes	Evaluation criteria
1. Behavier of metal ions in water. Precipitation of metal and formation of metal chelating complex	It is expected that the student will be able to: -explain the function of chelates ligands in water metal circulating processes	- Students answer the question based on application of theoretical principles Students solve the worked examples applying theoretical knowledge
2. Precipitation and solubility of metal hydrates, sulphides and carbonates	It is expected that the student will be able to : -:calculate metal ion concentration in solution of low soluble hydroxides, sulphides or carbonates	Students answer the question based on application of theoretical principles Students solve the worked examples applying theoretical knowledge -
3. Electrochemical measurements by ion selective electrodes	It is expected that the student will be able to: -use Nernst equation for description the ion selective electrode response	Students answer the question based on application of theoretical principles Students solve the worked examples applying theoretical knowledge
4. Construction of the Purbeix diagram for Fe-O- H ₂ O system	It is expected that the student will be able to: -use the Purbeix diagram and select the method for proper water treatments	Students answer the question based on application of theoretical principles Students solve the worked examples applying theoretical knowledge
5. The interaction of the environment components; The cycle of basic processes in the biosphere; The water cycle; The carbon cycle; The nitrogen cycle; Organic pollutants in soil; Organic pollutants in water;	 explain the interactions of the environment components and cycle processes in the biosphere classify and identify organic pollutants in soil and water 	- distinguish organic pollutant in soil, water and atmosphere

Pesticides.		
 6. Atmospheric chemistry. Organic pollutants in air; photochemical processes in atmosphere; Photodegradation of organic pollutants; Photochemical smog and a threat to the global atmosphere; Damage to the ozone layer. 	 identify the organic pollutants on the basis of the structure explain the photochemical processes in the atmosphere and influence the photochemical smog on the ozone layer 	 apply knowledge of the basic photochemistry to understanding atmospheric chemistry propose photodegradation pathways for a given organic pollutants in water
7. Environmental biochemistry; The biochemical mechanisms of toxicity; Toxicology of organic compounds; Introduction to ecotoxicology.	- explain the biochemical mechanisms of organic compounds toxicity	- recognize the potential formation of toxic substances from various biomolecules
8. "Green" chemistry in the application of basic organic reactions: Nitration; Halogenation; Alkylation; Oxidation; Sulphonation	 distinguish classical methods of organic synthesis and "green" methods explain and distinguish modern "green" organic reactions 	 propose alternative "green" methods for the synthesis of a given compounds carry out the synthesis of organic compounds by "green" reaction
9. Modern organic synthesis - a "green" approach: Reactions without solvent; Micowave reactions; Tandem and domino reactions; Application of "green" solvents.	- apply the principles of "green" chemistry in elementary organic reactions and modern organic synthesis	 apply microwave assisted reactions, tandem and domino reactions for the synthesis of a given compounds analyze the obtained compounds and interpret the results in writing form
10. Access to chemical analysis of environmental samples	 define the analytical process distinguish the application of classical methods of chemical analysis from instrumental methods in the analysis of environmental samples distinguish the sampling methods depending on the environmental sample (water, soil and air) 	 recognize the importance of each step of the analytical process, know the basic principle of individual methods of analysis

11. Environmental samples (water, soil, air)	 define indicators of water quality explain water pollution by heavy metals and other inorganic compounds write the reactions of metals with organic compounds, explain the mechanisms of mobility and binding of contaminants in the soil, estimate the indicators of air pollution 	 distinguish approach to chemical analysis of the soil, water or air, ability to independently access to chemical analysis of environmental samples, evaluate, compare, select, recommend and conclude what is the best analytical method for a given real problem, numerically solve problems on the basis of the measurement parameters
12. Laboratory exercises	 apply the principles of good laboratory practice, properly collect and process 	 carry out an environmental sample analysis, numerically express and
	- write the appropriate laboratory report	process the results on the basis of the measurements data, - show independence in laboratory work, - write the experimental data and making the laboratory reports.

FORM 2

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Associate prof. Ana Vrsalović Presečki, PhD		
2) Name of the course: Mass and energy balance		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. apply the principles of mass and energy conservation in the physical and chemical	 analyze and optimize the processes of chemical and related industries apply the methodology of chemical 	
processes2. define the process space , systemboundaries , and input and output of theprocess	engineering in the process development3. manage and plan the processes4. apply mathematical methods, models and	
3. distinguish stationary and non-stationary as well the open and closed processes	techniques in solving case studies	
4. set the energy and mass balance in the model systems		
5. outline a simple scheme of the process of chemical and related industries		

Teaching unit	Learning outcomes	Evaluation criteria
1. Mass balance of the physical processes	 apply the principle of mass conservation on physical processes define the process space, system boundaries, and input and output of the process set the mass balance of the task examples outline a simple scheme of the process of chemical and related industries 	 outline the process scheme, and identify the input and output flows of process determine the basis for calculation apply the law of mass conservation of and set the mass balances for the process solve the system of independent linear equations
2. Mass balance of the	- apply the principle of mass	- outline the process scheme,

	FORM	2
--	------	---

chemical processes	conservation on physical and chemical processes	and identify the input and output flows of process
	- define the process space, system boundaries, and input	- determine the basis for calculation
	and output of the process - set the mass balance of the task examples	- apply the law of mass conservation of and set the mass balances for the process
	- outline a simple scheme of the process of chemical and related industries	- solve the system of independent linear equations
3. Mass balance of the processes performed in the multiple units with of without	- apply the principle of mass conservation on physical and chemical processes	- outline the process scheme, and identify the input and output flows of process
recycle	- define the process space, system boundaries, and input	- determine the basis for calculation
	and output of the process - set the mass balance of the task examples	- apply the law of mass conservation of and set the mass balances for the process
	- outline a simple scheme of the process of chemical and related industries	- solve the system of independent linear equations
4. Energy balance of the physical processes	- apply the principle of mass and energy conservation on physical processes	- outline the process scheme, and identify the input and output flows of process
	- define the process space, system boundaries, and input and output of the process	 determine the referent state find literature data necessary to calculate the
	- define the initial and final state of the system	energy balance according to the initial and final state of the system and referent state
	- learn to use the thermodynamical tables in order to find the data necessary to calculate the energy balance	- apply the law of energy conservation of and set the energy balances for the process
	- set the energy balance of the task examples	- solve the system of independent linear equations
	- outline a simple scheme of the process of chemical and related industries	

5. Energy balance of the chemical processes	 apply the principle of energy conservation on physical and chemical processes define the process space, system boundaries, and input and output of the process define the initial and final state of the system 	 outline the process scheme, and identify the input and output flows of process determine the referent state find literature data necessary to calculate the energy balance according to the initial and final state of the system and referent state
	 learn to use the thermodynamical tables in order to find the data necessary to calculate the energy balance set the energy balance of the task examples outline a simple scheme of the process of chemical and related industries 	 apply the law of energy conservation of and set the energy balances for the process solve the system of independent linear equations

1) Course wacher, Sanura Dabie, 10iii	1) Course teacher: Sandra Babić, Tomislav Bolanča, Sanja Papić		
 2) Name of the course: Modern Analytical Techniques in Analysis of Environment 3) Study programme (undergraduate, graduate): undergraduate study – Ecoengineering 			
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:		
6. To explain sampling methods for monitoring people and environment exposure to pollutants, risk assessment, and environment protection intentions.7. To explain and apply sample	6. To apply basic knowledge of chemistry.7. To develop ability of technologies' analyses.		
 7. To explain and appry sample preparation methods for chemical analysis. 8. To apply spectrometric analytical methods in ecoengineering. 9. To apply separation analytical methods in ecoengineering. 	 8. To develop basic laboratory skins and define working rules in chemical laboratories 9. To track and monitor environment pollutions by measuring chemical indicators. 10. To demonstrate methodology of 		
 To apply principles of validation of analytical procedure. To recognize types of pollution and characteristics of wastewater from chemical and related industries. 	analytical process.		
 12. To select and apply characterization elements for analysis of industrial wastewater and water environment. 13. To apply modern analytical techniques for determination of selected ecological indicators in protection of water environment. 			

Teaching unit	Learning outcomes	Evaluation criteria
4. Sampling and preparation of sample for analysis.	 To explain sampling methods for monitoring people and environment exposure to pollutants, risk assessment, and environment protection intentions. To explain and apply sample preparation methods for chemical analysis. To explain and apply separation methods. 	 To define unit, cumulative, laboratory and examine sample. To explain methods of subsampling. To select sampling method and explain his suitability in relation with the desired information. To specify objectives of preparing sample for chemical analysis. To demonstrate knowledge of solvent extraction (extraction liquid-liquid and solid liquid). To demonstrate knowledge of solid phase extraction To select optimal method for preparation of sample for chemical analysis.
5. Instrumental analysis and data treatment	 To apply spectrometric analytical methods in ecoengineering. To apply separation analytical methods in ecoengineering. To apply principles of validation of analytical procedure. 	 To demonstrate knowledge of principles of molecular spectroscopy, to define advantages and disadvantages as well as the application in ecoengineering. To demonstrate knowledge of principles of atomic spectroscopy, to define advantages and disadvantages as well as the application in ecoengineering.

		 To demonstrate knowledge of principles of separation analytical methods, to define advantages and disadvantages as well as the application in ecoengineering. To select critically an optimal instrumental method for analysis.
6. Analytical methods of determination of ecological indicators	 To recognize types of pollution and characteristics of wastewater from chemical and related industries. To select and apply characterization elements for analysis of industrial wastewater and water environment. To apply modern analytical techniques for determination of selected ecological indicators in protection of water environment 	 To demonstrate knowledge about diverse types of pollutants as well as characteristics of wastewater from chemical and related industries that can pollute water environment. To demonstrate knowledge of elements of water characterization (industrial wastewater/water environment). To demonstrate knowledge of principles of total organic carbon analysis and its application in ecoengineering. To demonstrate knowledge of principles of chemical consumption of oxigen and its application in ecoengineering. To demonstrate knowledge of principles of chemical consumption of oxigen and its application in ecoengineering. To demonstrate knowledge of principles of chemical consumption of oxigen and its application in ecoengineering.

	- To demonstrate
	knowledge of principles
	of toxicity methods and
	its application in
	environment protection.

English language (basic course)

COURSE AIM: The acquisition of competencies such as reading, oral and written fluency in English, illustrating usage of expert engineering terminology. Generating new vocabulary by using on line dictionaries on their own to recall pronunciation and meaning. Preparation of presentations for purposes of practicing oral interpretation for future international conferences. Students are also introduced to some customs regarding the cultures of the United States and the United Kingdom.

DEVELOPMENT OF GENERAL AND SPECIFIC COMPETENCIES OF STUDENTS: General competencies: pronunciation of expert terminology that refers to various types of engineering and technology in English.

Specific competencies: writing a CV and illustrating usage of English grammar. Orally presenting a lab report which was previously filmed and placed in their e-portfolio.

STUDENT OBLIGATIONS: students are obliged to attend classes and solve all the revision tests in their e-class. They are also obliged to enter new vocabulary in the glossary of their e-class individually. They must have their indeks or ID card when writing midterm tests or final written tests.

SIGNATURE CONDITIONS: 80 percent attendance in each semester and taking part in class by engaging in class work. They must have a Euro pass CV and filmed lab experiment in their e-portfolio.

They must have a positive grade on their midterm test 1.

LECTURES METHOD: Lectures, language exercises in class such as reading,

comprehension, pair work, group work, individual group work that is to be placed in their eportfolios, revision of grammar by individually solving the revision tests in the e-class, consultations if need be every week.

MANNER OF ASSESSMENT AND TESTING:

Written midterm tests (60 percent or more on both midterm tests excludes the need for final written and oral exam)

Final written test (60 percent or more for passing grade) and oral exam (oral presentation of lab experiment in their e-portfolio)

QUALITY CONTRUL AND SUCCESS OF COURSE: Anonymous student survey METHOD PREREQUISITES:

Access to a computer and knowledge of e-class password and e-portfolio password in Moodle and Merlin programs.

i) COURSE LEARNING OUTCOMES:

- 1 students will generate basic concepts of engineering terminology in English
- 2 students will demonstrate individual discovering of pronunciation of new vocabulary and the

definition of the newly acquired expert terms

3 students will demonstrate ability to use the e-portfolio for recording personal improvement

4 students will demonstrate recalling grammar by solving the revision tests in their eclass

j) PROGRAM LEARNING OUTCOMES:

- 1 students will recall expert terminology used in the various fields of engineering
- 2 students will generate an advanced usage of grammar in the English language

students will recall how to write a CV, cover letter and reply to an job ad in the paper
students will use the Merlin and Moodle computer programs to do individual or group
work

in their e-class and e-portfolio.

English language (advanced course)

COURSE AIM: Acquiring competencies such as reading, oral and written fluency in English in the field of technology. Individual analysis of new vocabulary by using the on line dictionaries to discover the pronunciation and definition. Individual examination of revision tests in the e-class. Preparation for making oral presentations in English. Students also learn about the customs and cultures of the United States and the United Kingdom.

DEVELOPEMENT OF GENERAL AND SPECIFIC COMPETENCIES OF STUDENTS: General competencies: pronunciation of expert terminology related to the field of technology in English. Understanding of expert terminology and usage both in written and oral form.

Specific competencies: oral presentation of lab report and entering new vocabulary in the glossary of the e-class. Recalling grammar by revision of tests in the e-class. Practising usage and pronunciation of new vocabulary.

STUDENT OBLIGATIONS AND MANNER OF FULFILMENT: Students are expected to attend at least 80 percent of all classes and are obliged to put their CV and group presentation in their e-portfolio. They are also expected to solve all revision tests in the e-class individually. They have to bring their indeks or ID cards during midterm and final tests. SIGNATURE CONDITIONS: In order to get a signature at the end of each semester they must attend at least 80 percent of all classes and take part in language exercises, orally present their group work of the lab experiment conducted at the University and placed in their e-portfolio.

They must pass midterm tests 1 and 2.

LECTURE METHOD: Lectures and language exercises such as reading out loud, comprehension, pair work, group work and consultations when necessary.

ASSESSMENT METHOD AND EXAMINATION:

Written midterm tests (60 percent or more on both midterm tests excuses the student from having to take the final written and oral tests)

Final written test (at least 60 percent required to pass) and oral exam (presentation of lab experiment filmed as part of group work and put in their e-portfolio)

QUALITY CONTROL AND SUCCESS OF COURSE: Anonymous student survey METHOD PREREQUISITES:

Access to a computer and demonstration of using the e-portfolio and e-class programs via passwords in the Merlin and Moodle programs intended for students of Zagreb University.

COURSE LEARNING OUTCOMES:

- 1 students will be able to use the basic terminology in the field of technology in English.
- 2 students will explain new vocabulary and arrange it in the e-class glossary individually
- 3 students will use the e-portfolio to record personal development

4 students will examine the revision tests in the e-class and recognise the grammar and be able

to use it in both written and oral communication

PROGRAM LEARNING OUTCOMES:

1 students will understand expert terminology used in the contemporary fields of technology

2 students will review and use English grammar at an advanced level

3 students will conclude how to present a lab report both orally and in writing

4 students will demonstrate usage of the e-class and e-portfolio in the Merlin and Moodle

programs intended for students of Zagreb University

1) Course teacher: Assoc. Prof. Gordana Matijašić, PhD Prof. Aleksandra Sander, PhD			
2) Name of the course: Unit operations in environmental engineering			
3) Study programme (undergraduate, graduate): Environmental Engineering, Undergraduate			
4) Status of the course: Required			
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:			
outcomes):1. Explain and analyze the selected thermal	1. The ability to apply basics of fundamental engineering knowledge.		
separation processes.2. Explain the utilization of energy separating agent and mass separating agent in the selected thermal separation processes.	2. Organizational and planning abilities necessary to perform simple experiments with available laboratory equipment and devices.		
3. Define mechanisms of mass and heat transfer in the individual separation process and the corresponding individual and overall resistances.	3. The ability for critical analysis and solving of environmental problems4. The ability to apply the methodology of the theoretical interpretation of experimental		
4. Define properties of coarse disperse phase, methods of measurement, graphical interpretation and approximation of particle size distribution.	theoretical interpretation of experimental results.		
5. To analyze mechanical separation processes.			
6. To analyze mixing of homogenous and heterogeneous systems.			
7. To analyze energy and kinetic aspects of the grinding process.			
8. To conduct experiments in laboratory scale in order to estimate the parameters required for the process design.			
7) Teaching units with the corresponding learning outcomes and evaluation			

criteria		
Teaching unit	Learning outcomes	Evaluation criteria
1. Heat exchangers	 define criteria's for classification of heat exchangers analyze the performance of heat exchangers 	 compare different types of heat exchangers evaluate heat flow and heat transfer area evaluate the efficiency of heat exchangers
2. Evaporation	 describe different types of evaporators explain methods of evaporation solve mass and heat balances and kinetic equation for heat transfer explain energy saving methods 	 schematically illustrate evaporator and define inlet and outlet process streams know how to use tables and diagrams necessary for the calculations calculate heat consumption and heat transfer area o fan evaporator distinguish different types of evaporators
3. Separation with the addition or development of new phase	 explain separation by means of absorption, distillation and solvent extraction explain phase equilibriums define balance (mass and heat) and kinetic equations for selected separation processes explain graphical and numerical methods for design of column separators describe equipment and working principles of equipment 	 schematically illustrate separation process with inlet and outlet process streams and the corresponding balance equations based on the phase equilibrium and physicochemical properties of the components select solvent for extraction and absorption illustrate process in the corresponding equilibrium diagrams use graphical and numerical methods for dimensioning column separators (NTU, HTU, H, D) distinguish columns with different types of internals

		(plates, packing)
4. Separation processes with the solid phase	 define methods of the selected separation processes explain separation by means of crystallization and drying define mass and heat balances describe equipment and its working principles explain energy saving methods for drying 	 explain methods of crystallization (solution, melt, gas) based on the solubility diagram select method of crystallization from solution calculate mass of crystals and heat consumption of the crystallizer (mass and heat balances) use humidity charts when solving numerical examples related to drying illustrate and explain the drying curves
5. Characterization of coarse disperse phase.	 analyze the properties of coarse disperse phase recognize the methods of characterization of coarse disperse phase 	 distinguish disperse system, disperse phase and disperse medium define dispersity state and mixedness explain particle shape and meaning of equivalent diameters sketch the graphical representation of particle size distribution
6. Mechanical separation processes	 define separation efficiency describe sedimentation and filtration identify inlet and outlet variables 	 distinguish total and grade efficiency explain separation efficiency through characteristic values explain basics of gravitational and centrifugal sedimentation explain the basics of deep- bed filtration, cake filtration and centrifugal filtration apply theoretical

		knowledge about cake filtration in practical measurement
6. Mixing of fluids, suspensions and powders	- define degree of mixing in homogenous and heterogeneous systems	- distinguish hydrodynamic regime in liquid-liquid and solid-liquid mixing
	- define primary variables that determine the mixing conditions	- explain possible suspension states and suspending regimes
	- analyze dynamic process response	- define powder types, mixture types and mixture quality
		- explain particle segregation
		and mechanisms of segregation
7. Comminution	- analyze energy and kinetic aspects of the grinding process	- explain models for estimation of energy consumption in comminution
		- describe kinetics of particle size reduction
		- apply theoretical knowledge in practical measurement
		- name the types of equipment

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: prof. dr. sc. Veljko Filipan		
2) Name of the course: ENGINEERING THERMODYNAMICS		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning)6) Learning outcomes at the level of the study programme:		
outcomes): 1. apply basic laws of thermodynamics for thermodynamic calculations of processes with ideal and real working media	1. analysis, synthesis, optimization and modelling of the comprehensive technologies which generate minimum waste and apply close production cycle strategy,	
2. apply graphical representation in defining and analysis of thermodynamic processes	2. basics of fundamental engineering knowledge	
3. use tables and diagrams with thermodynamic properties of some particular real working media applied in real processes and devices	3. critical analysis of environmental problems4. creation of a database of engineering knowledge as a starting point for the improvement of technologies with minimum	
4. define energy indicators of thermodynamic processes and devices working in heating and cooling modes	impact on the environment5. learning skills and competences requiredfor further vocational training	
5. analyse environmental impact of thermodynamic processes and transformations		

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
	- understand basic terms and definitions in engineering thermodynamics	- define basic thermodynamic state quantities and thermal quantities
1. basic thermodynamic laws and thermodynamic quantities	- differentiate thermodynamic quantities such as enthalpy, entropy, heat, energy and	- explain analytical expressions of thermodynamic laws
1	work - connect the 1st and the 2nd	- calculate mechanical work due to volume changes and
	law of thermodynamic	technical work
	- differentiate thermodynamic	- define basic cyclic

	processes according to the direction of the process	processes
2. processes with ideal working media	- define basic processes with ideal gasses; represent them in thermodynamic diagrams	- reproduce and explain the equation of state for ideal and real working media
	- define processes of compression and expansion; differentiate real and ideal	- sketch p,v T,s and h,s diagrams of basic processes with ideal gasses
	ones - calculate reversible and irreversible thermodynamic processes with ideal gasses - know achievable cyclic processes	 generate diagrams of achievable cyclic processes calculate thermodynamic properties and energy performance of particular cyclic processes
3. processes with real working media	- explain thermal properties and changes in real working	- sketch and explain p,v T,s and h,s diagrams of basic
	- use charts and tables with real working media properties for the calculation of basic processes	thermodynamic processes with real working media - use h,d diagram for defining real processes with wet air

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Marija Vuko	vić Domanovac, PhD				
 2) Name of the course: Air, Water and Soil Management 3) Study programme (undergraduate, graduate): undergraduate 4) Status of the course: obligatory 					
			5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
			outcomes): 1. to recognize the causes and sources of pollution, air, water, soil and noise pollution	1. to link the basic knowledge in the environmental engineering planning and analysis of the impact of pollution on the	
 to define measurable indicators to assess the state of resources in the environment to predict the possibility of air, water and 	environment2. to apply eco-engineering approach in the analysis of indicators of the state of the environment				
soil pollution by taking preventive concrete measures to prevent or reduce adverse impacts	3. to develop awareness and to train the students in the implementation of preventive measures to protect the environment				
4. to distinguish measures for the pollution prevention and remediation of caused pollution	4. to apply new technologies aimed at reducing negative environmental impacts, and consumption of raw materials and natural				
5. to integrate legislation in the field of protection and conservation of the natural components of the environment into the environmental engineering planning	5. to operate the system of environmental protection				

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1. Air management	 to define the sources of air pollution, sampling, measurement of pollutants and data analysis to predict the extent and methods of organizing the protection and improvement of air quality to integrate legislation on 	 distinguish primary and secondary air pollutants and methodology in data collection and analysis interpret of the procedures for the purification of air interpret the legislation in the field of air management
	air quality when choosing	

	protection measures	
2. Water management	- to describe the management and protection of water resources	- recognize sources of pollution and measures for water protection
	 to describe the preparation of drinking water to solve the problem of wastewater treatment and sludge disposal with the design process to define industrial wastewater to integrate legislation on water quality in the processes of management, protection and water treatment 	 describe and explain the process of purifying drinking water distinguish physical, chemical and biological processes for wastewater management interpret the legislation in the field of water management
3. Soil management	 to define the processes in the formation of soil fertility and soil erosion to define the production, physiological and ecological function of the soil to indicate the use of soil to explain the remediation of soil and groundwater to integrate legislation in the processes of soil management 	 define the factors and processes related to the soil management apply preventive and remedial measures use the soil as a source of raw materials, habitat, cultural heritage illustrate the remediation of soil and groundwater interpret the legislation in the field of soil management
4. Noise management	 to define the sources, the path of expansion and noise reception to predict noise protection measures integrate legislation on noise protection when selecting noise protection measures 	 explain the noise maps distinguish primary and secondary measures for noise protection interpret the legislation in the field of noise management

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teachers: Associate. prof. Ana Lončarić Božić PhD		
2) Name of the course: Environmental management systems		
3) Study programme: undergraduate		
4) Status of the course: mandatory		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):6) Learning outcomes at the level of the study programme:		
 the ability to apply the methodology of Environmental management systems based on Deming's cycle of continual improvement the ability to analyse processes, activities and corresponding environmental aspects and 	1. the ability to apply basics of professional protection of local and global environment, environmental development and control, and environmental legislation ;	
2. the ability to propose preventive measure protential environmental problems related		
to different processes and activities 4. the ability to recognise and response to the specific environmental issues related to inherent risks of chemical industry	3. the ability to understand and solve environmental issues using environmental management tools	

7) Teaching units with the corresponding learning outcomes and evaluation criteria		
Teaching unit	Learning outcomes	Evaluation criteria
1. Basic principles of sustainable development; Introduction to Environmental management system (EMS) based on Demig's cycle; ISO 14001	 adopt the preventive approach in environmental protection and management understand the role of Demings' cycle in continual improvement understand the significance of the main elements and their correlation within EMS understand the requirements of ISO 14001 analyse processes, activities and corresponding environmental aspects and impacts 	 describe and explain the basic principles of preventive approach and EMS as a sustainable development tool specify the elements of Demings' cycle and describe the concept of continual improvement explain the requirements for environmental policy according to ISO 14001 set "smart "EMS objectives based on given examples define environmental aspects and impacts based on given

		case study - distinguish types of EMS documentation
2. Cleaner production, Life Cycle Analysis (LCA) and Responsible care	 - understand and adopt the methodology of Cleaner production, Life Cycle Analysis (LCA) and Responsible care - correlate sources of waste in Cleaner production with corresponsive preventive measures - understand the importance and main characteristics of programme Responsible care 	 -describe and explain the basic elements of Cleaner production, Life Cycle Analysis (LCA) and Responsible care methodology -classify types of waste sources in Cleaner production -specify and explain applicability of preventive measures in Cleaner production
	-in chemical industry	-describe inherent environmental and health risks in chemical industry -explain principles of Responsible care their correlation with the EMS methodology

1)Course teachers: Assistant prof. Hrvoje Kušić, PhD			
2)Name of the course: Waste management 3)Study programme: undergraduate			
			4) Status of the course: mandatory
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):6) Learning outcomes at the level of the study programme:			
 the ability to understand basic terms and adopt the main principles of waste management the ability to understand the problem of 	1. the ability to apply professional knowledge regarding waste management and environmental legislation ;		
waste generation as one of the most importantenvironmental issues3. the ability to understand and apply the	2. the ability to perform critical analysis of environmental problems related to the unsustainable waste management practice		
hierarchy of waste management according to the principles of sustainable development 4. the ability to correlate sources of waste generation and appropriate minimisation stratagies	3. the ability to interpret the information on waste sources		
 strategies 5. the ability to classify different types of waste according to their characteristics 6. the ability to select appropriate waste management method according to identified characteristics of waste 			

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
 Waste; basic principles, legal framework, introduction to waste management 	 adopt basic terms in waste management all participants in integrated waste management system -understand the problem of waste as one of the key issues in environmental protection -understand the national Strategy, and roles and responsibilities of all participants in Waste management 	 define basic terms in waste management specify the main problems of waste classify the sources of waste, their significance and potential environmental impact specify and explain the main goals of national Strategy of Waste management, and identify the roles of participants

2. Sustainable development and waste management	 understand and adopt the hierarchy of waste management according to the principles of sustainable development recognise the opportunities and adopt the methodology of waste minimization regarding 	 -describe and explain t hierarchy of waste management -correlate the sources of waste with the opportunities of preventive measures for the waste minimisation
	the type of waste source	- describe the methodology of Cleaner production
3.Types of waste, waste characteristics and management strategies	 be acquainted with the characteristics of specific types and sources of waste —adopt measures of waste management regarding the waste characteristics and legal requirements <i>Kriteriji vrednovanja</i> definirati vrste otpada i njihove karakteristike procijeniti mogućnosti vrednovanja pojedinih vrsta otpada navesti osnovne zakonske zahtjeve vezane uz pojedine vrste otpada i mjere postupanja s otpadom 	 -classify types of waste and specify their characteristics -assess the opportunities for valorisation of specific types of wastes through reuse, recycling and recovery strategies -specify legal requirements for different types of waste and required management measure

 2) Name of the course: Reactors and bioreactors 3) Study programme (undergraduate, graduate): undergraduate 4) Status of the course: Active 				
			5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:
			outcomes): 1. The definition of process variables and parameters of chemical reactors and	1. Apply the methodology of chemical engineering when choosing a reactor for the implementation of certain types of reactions
bioreactors2. Carrying out kinetic models based on the physical picture of the process or conducted	2. Apply mathematical numerical and / or analytical methods in the assessment of parameters of kinetic models			
kinetic experiments3. Distinguishing kinetics of reactions in homogeneous and heterogeneous systems	3. Apply the acquired knowledge in modeling and design of chemical reactors and bioreactors			
4. Differentiating catalysts and biocatalysts according to the structure, function and conditions of use.	4. Apply mathematical methods, models and techniques in solving case studies			
5. Detached reactors and bioreactors according to performance				
6. Set up mathematical models of processes with chemical and biochemical reactions in various types of reactor (kinetic and reactor model)				
7. Solved analytically and numerically (simulate) mathematical models of chemical and biochemical reactions in various types of reactor				
8. Evaluate the value of kinetic model parameters based on the given experimental data by a computer program SCIENTIST				

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
	- The definition of a chemical reactor as the basic unit of chemical processes	
1. The concept of process	 Define the process space, system boundaries, and input output variables of the process 	Distinguish the main types of chemical reactorsApply the law of
space and a chemical reactor	- Place the energy and mass balance of case studies	conservation of mass and mass balance set default process
	- Define the basic division and classification of chemical reactors	
2. The ideal reactor types and their mathematical models	- Define reactor model of an ideal batch reactor	- Apply the features of an ideal batch reactor when performing the balance of
	- Define the reactor model of an ideal stirred tank reactor	heat and mass - Apply the features of an
	- Define reactor model of and ideal tubular reactor-	 ideal flow stirred tank reactor when performing the balance of heat and mass Apply the features of an ideal tubular reactor when performing mass balance and heat
3. Kinetic models in homogeneous and heterogeneous systems	- Define the dependence of the reaction rate on the temperature	- Distinguish the basic features of chemical reactions in homogeneous and
	- Define the characteristics of the kinetics of reactions in homogeneous systems	 heterogeneous systems Apply the Arrhenius dependence in determining the activation energy spent
	- Define the characteristics of the kinetics of reactions in heterogeneous systems	kinetic experiment
4. Basic groups of reactors for reactions in homogeneous and heterogeneous systems	- Describe reactors for the implementation of the non- catalytic reaction fluid solid	- Apply the core model or a model of continuous reaction kinetics when defining noncatalytic reaction fluid
	 Describe reactors gas - liquids Describe reactors for the 	solid - Apply Whitman's theory of the boundary layer in the

	implementation of catalytic reactions with solid catalysts	absorption of the reactant gas in the liquid phase - Apply the kinetic model of Hougen Watson in the implementation of catalytic heterogeneous reactions
5. Experimental methods in kinetic studies	 Define the integral method to estimate parameters of the kinetic model Define the differential method to estimate parameters of the kinetic model Define the modified differential method to estimate parameters of the kinetic model 	 Apply different numerical methods estimate the parameters depending on the complexity of the reaction system (kinetic model and experimental reactor) Critically choose the best kinetic model that based on criteria mean square deviation, described for an kinetic experiment performed
	- Define the criterion of agreement of experimental data and calculated values	
6. The concept and features of biological material	 Define the specificities of biological material as a catalyst in relation to classical chemical catalyst Define the differences of chemical and biochemical engineering arising from differences catalysts and biocatalysts 	 Distinguish bioprocess of chemical processes Distinguish catalysts and biocatalysts Distinguish features biochemical reactors
	- Define the differences between bioprocesses and chemical processes, and biochemical reactors	
7. Biocatalysts and biocatalysis	 Define the concept of biocatalysts Define the structure of the biocatalyst Define the advantages and disadvantages of biocatalysts in comparison to conventional catalysts 	 Identify the advantages and disadvantages of the use of biocatalysts Identify the reproducibility of sources from which the biocatalysts are produced

	- Define the sources for obtaining biocatalysts	
8. Enzymatic reaction kinetics	 Define the kinetics of enzyme-catalyzed reactions: Michaelis-Menten kinetics Define the method of initial reaction rates 	 Perform kinetic model of Michaelis Menten on the mechanism based enzyme- catalyzed reactions Evaluate the reaction rate on the basis of given experimental data, which are measured by initial reaction rate method Solve the case study with the default experimental data using a differential or integral method parameter estimation
9. Microbiological kinetics	 Define bioprocess Define the cellular metabolism Define utilization reactions in bioprocessing Define the rate of growth of microorganisms and the specific growth rate of biomass: Monod kinetics 	 Recognize differences in the stoichiometry of chemical reactions and bioprocesses In the given example, calculate the rate of growth of microorganisms using a mathematical model
10. Overview of the basic types of bioreactors	 Set the balance of substances in various types of bioreactors Identify which of the proposed reactor types is the most suitable for use of the inhibition phenomena by substrate or product 	 List the different types of reactors used in biochemical engineering and set their differences Be able to recognize when used type of reactor, depending on the kinetics of enzyme-catalyzed reactions and kinetics of bioprocesses
11. Aeration and mixing in biological systems	 Define the specificities of mixing and aeration in biological systems To outline and describe the transfer of oxygen in biological system. 	 Write mathematical expressions that describe gas diffusion in the liquid system Specify special requirements of interference in biological systems

1) Course teacher: Prof. Bruno Zelić, PhD			
2) Name of the course: Analysis and Modeling of Environmental Processes			
3) Study programme (undergraduate, graduate): Undergraduate			
4) Status of the course: Required			
 5) Expected learning outcomes at the level of level of the course (4-10 learning outcomes): 6) Learning outcomes at the level of the study programme: 1 to apply and optimize chemical and related 			
1. to apply basic principles of mass and energy conservation on physical, chemical and biochemical processes	 to apply and optimize chemical and related industrial processes to apply methodology of chemical engineering for process development 		
 2. to define process space, system borders, and inlet and outlet process parameters 3. to develop mathematical models of engineering and environmental processes 4. to apply numerical methods for solving of mathematical model 5. to define experimental plan 6. to optimize process using experimental and model simulation results 	 3. to manage and schedule processes 4. to manage and schedule time 5. to apply mathematical methods, models and techniques for solving of case studies 		
7. to apply numerical methods for process optimization			

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1. Mathematical model of the process	 to apply basic principles of mass and energy conservation on physical, chemical and biochemical processes to define process space, system borders, and inlet and outlet process parameters to develop mathematical models of engineering and 	 construct process scheme for case study and identify inlet and outlet process streams and parameters determine the base for calculation and standard conditions apply the principle of mass and energy conservation and develop mass and energy

	environmental processes	balances for case study
2. Numerical methods and mathematical modeling	- to apply numerical methods for solving of mathematical models	- solve resulting system of independent linear equations or nonlinear equations or differential equations or partial differential equations
3. Process optimization	 to define experimental plan to optimize process using experimental and model simulation results to apply numerical methods for process optimization 	 define experimental plan for case study optimize the process using required optimization method

Γ

1) Course teacher: Veljko Filipan, Domagoj Vrsaljko		
2) Name of the course: Process equipment in ecoengineering		
3) Study programme (undergraduate, graduate): Undergraduate (Environmental Engineering)		
4) Status of the course: obligatory		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
outcomes): After the completion of obligations and passing the exam, it is expected that the	After the completion of obligations and passing the exam, it is expected that the students will be able to:	
tudents will be able to: Apply the basic rules, symbols and norms luring viewing, descripting and specifying of process equipment simple elements	 Apply knowledge and understanding of elementary engineering subjects Apply knowledge of elementary engineering for calculating balance of matter 	
 Apply the basic principles of engineering mechanics to simple parts and process equipment systems 	and energy2. Apply basic professional knowledge of energy management	
Understand the basic properties and engineering materials test methods	4. Create a base of engineering knowledge as a starting point for improving the technology	
4. Interpret purpose, construction solutions, properties and application of the process equipment basic elements and systems and assess their most important characteristics	with minimal impact on environment 5. Analyse, synthesize and model complete technologies with the least impact on environment	
5. Know how to choose the appropriate elements and sets of equipment from the standpoint of efficiency and economy	6. Acquire knowledge related to processes taking place in the environment or in interaction with the environment	
	7. Understand today's technologies and the environmental impact	
	8. Adaptability to team work	

7) Teaching units with the corresponding learning outcom	es and evaluation
criteria	

Teaching unit	Learning outcomes	Evaluation criteria
1. Introduction, technical documentation	 Apply the basic rules and norms at the display and description of simple elements of process equipment Apply graphic symbols in process diagrams and charts 	 In the written test demonstrate the ability to sketch orthogonal and perspective view of a basic element and properly mark the most important measures In the written test demonstrate the ability to sketch graphic symbols of simple pieces of equipment
2. Fundamentals of mechanical behaviour of the process equipment parts	 apply the basic principles of engineering mechanics to simple parts and process equipment systems Define a causal relationship between load, stress and strain Distinguish basic loads of simple pieces of equipment and devices 	 In the written test demonstrate the ability to define static and inertial forces and set the conditions of equilibrium and determine all unknowns for simple systems In the written test demonstrate the ability to determine the amount of the maximum stress and strain for simply loaded element

3. Materials for equipment and devices	 Understand the basic properties and methods for testing of engineering materials Define possible basic procedures for creating and connecting equipment elements Understand the criteria for the selection of materials for individual pieces of equipment 	 In the written test demonstrate the ability to sketch diagrams of static strength and explain the meaning of certain areas In the oral exam determine the most important properties of a material for a given application
4. Basic elements and circuits of process equipment	 Understand the purpose, design and construction solutions, properties and application of the basic elements and systems of process equipment (rotating systems - shafts, drive shafts, rotors, clutches, brakes, elastic bonds and damping shock and vibration, bearings) Assess the characteristics and be able to choose the gear and drives, power apparatus (electric motors, engines and turbines) and construction equipment (pumps, compressors, blowers and fans) Differentiate elements and equipment of pipelines (pipes, valves, sealing, insulation) 	 In the oral exam interpret basic characteristics of an application elements and systems - In the oral exam select suitable elements and circuits by application - In the oral exam determine the characteristics of serial or parallel-connected active or passive elements of the hydraulic and pneumatic systems

5. Process equipment systems by application	 Process equipment for treatment of solid waste (conveyors, screw conveyors, bulldozers, cranes, crushers) Air purification equipment (filters, cyclones, scrubbers) Water treatment equipment (tanks, sedimentation tanks, filter presses, oil separators, mixers) Equipment for thermal waste treatment (stoves, furnaces, incinerators); Measuring equipment and instruments in environmental protection, display and analysis of measurement results Standardization and typing of equipment, optimization; specifications and selection of equipment 	 In the oral exam describe the process scheme of the system and describe the most important parts and their purpose In the oral exam select suitable elements and circuits from the standpoint of efficiency and economy In the oral exam demonstrate the ability to fulfil the specifications for equipment selection
--	--	---

University of Zagreb Faculty of Chemical Engineering and Technology

1)Course teachers: Prof. Sanja Papić, PhD Assoc. prof. Ana Lončarić Božić, PhD Assist. prof. Hrvoje Kušić, PhD 2) Name of the course: Environmental Impact Assessment 3) Study programme: undergraduate		
4) Status of the course: mandatory		
 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 1. define participating parties in Environmental impact assessment (EIA) 	 6) Learning outcomes at the level of the study programme: 1. understand the importance of strategic environmental impact assessment (SEA) and its' influence on development of chemical industry on the national and regional level. 	
procedure. To get acquaint with the basicprinciples and the legal framework of EIA2. understand the importance ofenvironmental impact assessment in thedecision making process within the economysector, and identify the sociological aspectsof EIA.	 identify the correlation of Environmental impact assessment (EIA) with the scientific aspects within the field of environmental engineering. understand the importance of EIA and SEA as environmental management tools adopt interdisciplinary approach to study the correlation between the environmental engineering and EIA procedure based on 	
 3. predict and evaluate environmental impacts and propose appropriate mitigation measures 4. adopt the systematic approach to the identification of the processes on particular location contributing to the overall environmental impact. 	chemical engineering methodology using mathematical modeling and process optimization	
5. identify the opportunities of environmental impact control using environmental management system tools.6. be acquainted with the elements of		

FORM 2

Environmental impact assessment study.

7. understand the importance of EIA as an integral part of technical project documentation.

8. understand the importance of EIA as a tool in creating the environmental policy and management in chemical industry.

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1.Paricipating parties in the Environmental impact assessment (EIA) procedure; main terms and definitions; legal framework	 adopt interdisciplinary approach and understand the need for contribution of natural, technical and social sciences in analysis environmental impact related to the natural processes and anthropogenic activities understand the purpose and benefits of EIA adopt the main principles of EIA understand the significance and characteristics of different types of environmental impacts and significant impacts be acquainted with the requirements of Environmental protection law and EIA and SEA 	 explain the main terms in EIA specify different levels in EIA and SEA explain the integration of health and sociological aspects in EIA describe EIA stages including screening and scoping, identification and evaluation of impacts, determination of mitigation measures, decision making, control, and analysis specify goals and describe methods in EIA screening stage give examples of positive and negative screening list
2. Prediction, mitigation and evaluation of environmental impacts.	 adopt environmental impact identification and evaluation methodology including different methods and models for impact prediction be acquainted with the elements of location description, assessment 	 apply environmental impact identification and evaluation methodology based on given examples outline the elements of location description required in EIA describe characteristics of

	techniques, environmental components and uncertainties in EIA understand the mitigation measures and hierarchy of	different assessment techniques and their applicability based on given case studies
	their application within EIA	-apply appropriate method and/or model to evaluate environmental impact within EIA based on given example -correlate environmental impacts and corresponding mitigation measures with regard to EIA hierarchy
 3. Uncertainty in EIA process; significance concept Nesigurnost u PUO procesu. Zajednički elementi i referentne vrijednosti pri određivanju nesigurnosti 	-understand the uncertainty in EIA process and its' importance in interpretation of assessment results -adopt the significance concept in EIA process and be acquainted with the types of reference values	-explain the significance concept in EIA process -explain the uncertainty in EIA process based on given examples
4. Presentation of the EIA study; positive and negative aspects of public participation	 adopt the EIA procedure and Environmental management tools understand the role of EIA within the frame of national legislation understand the aspects of public participation in EIA 	 -demonstrate screening methods based on give examples -describe the main project characteristics, location and types of impacts based on given examples - specify the requirements for public involvement in EIA -describe EIA post-decision monitoring audit -perform EIA based on given case study

1) Course teacher: Igor Sutlović, associate professor		
2) Name of the course: Energy management		
3) Study programme (undergraduate, graduate): undergraduate		
4) Status of the course: obligatory		
5) Expected learning outcomes at the level 6) Learning outcomes at the level of the course: 6) Learning outcomes at the level of		
1. recognize energy consumption trends1. know the role of energy in society		
2. know forms of energy and their carriers	2. recognize connection between socio-	
3. know processes of energy transformation economic data and energy consumption		
4. know main sources of environmental impact in energy use3. define how to decrease environmental impact of energy use locally and globally		
5. know role of renewable energy sources		

7) Teaching units with the corresponding learning outcomes and evaluation criteria

Teaching unit	Learning outcomes	Evaluation criteria
1. Role of energy in society	- know relevant statistics, domestic and global	- set connection between energy consumption and other influencing data
2. Energy classification	- know classification regarding direction of energy transformation and origin of primary energy source	- classify certain form of energy
3. Energy transformations	- know how primary sources can be transformed	- for certain process define possible transformation
4. Environmental impact of energy transformations	 recognize specific environmental impact of various categories of energy use propose how to decrease it 	- define environmental impact of certain energy use
5. Renewable energy sources	- know advantages and disadvantages of RES compared to non-renewables	- know advantages of certain RES

a) Course teacher: Assoc. Prof. Nenad Bolf, Ph. D.			
b) Course: Process Measurements and Control			
c) Title of the study program: Chemical engineering			
d) University education level: Undergraduate			
e) Academical year: 3 f) Term : 6			
g) Teaching method: h) Hours (weekly)			
1. Lectures 2			
2. Practical (laboratory) work 1			
3. Seminar -			
4. Field teaching (days) -			

h) Aim of the course:

Instruct students to use the software package MATLAB/Simulink and its advanced functions for chemical engineering calculation, display and analysis of measurement data, modelling and process optimization.

i) Course learning outcomes (4-8):	j) Program learning outcomes:	
1. Solve systems of equations by matrix calculation in a software package	1. To apply chemical engineering methodology in the process development	
2. Apply advanced features for analyzing and displaying data	2. To apply mathematic methods, models and techniques in solving examples	
3. Perform symbolic functions and calculations	3. To perform process measurements and to control processes	
4. Analyze measurement data using the Statistics, Curve Fitting, Spline and System Identification Toolbox	4. To analyze and optimize chemical and related industry processes	
5. Develop process models in a graphical user interface using the Simulink		
6. Solve examples of continuous, discrete and hybrid systems		

k) Teaching units with associated learning outcomes and evaluation criteria				
Teaching unit	Learning outcome	Evaluation criteria		

MATLAB / Simulink. Environment, interface and basic operations. Manipulating vector, matrices and fields. Data structures and programming.	Solve systems of equations by matrix calculation using the software package.	Solve the system of equations by matrix calculation.	
Process and system simulation. Methods and tools for simulation. Plotting and graphic display.	Apply advanced features for solving, displaying and data analyzing.	Solve and analyze the dynamic model of process/ system applying numerical methods.	
Symbolic computation fundamentals. Using functions for symbolic computation.	Solve symbolic expressions and equations and linear algebra examples. Apply special functions in the graphical environment.	Solve given symbolic expression or equation.	
Data processing in Curve Fitting Toolbox. Parametric and nonparametric fitting. Spline Toolbox.	Process measurement data and calculate fitting statistical. Apply the method of linear and non-linear regression using parametric and non-parametric models. Linear and nonlinear fitting procedures.	Implement regression analysis and data processing in the program interface.	
System identification. Parametric and non- parametric identification. Model validation.	Develop a dynamic model of process/system using identification methods. Derive the model in a graphical environment.	Solve the example of dynamic identification based on the real plant data.	
Simulink fundamentals. Developing process/system model. MATLAB/Simulink connectivity and interaction.	Develop continuous, discrete, and hybrid models of linear and nonlinear systems.	Develop a process/system model in a graphical environment by using block diagrams.	
Programming in the Simulink graphical environment.	Simulate and analyze dynamic systems in the graphical environment.	Conduct a simulation and analyze the simulation results.	

l) Student assessment			
1. Assessment methods	2. Examination		
- homework and seminars	- continuous monitoring and evaluating		
- colloquia/partial exams	- computer exams		
- computer simulation			
m) Evaluation criterion			

1. Continuous monitoring and evaluating					
Activity and corresponding number of points		Evaluation criterion			
Activity	Points	Grade	Points		
 computer simulation colloquia/partial exams participation TOTAL 	55 40 5 100	sufficient (2) good (3) very good (4) excellent (5)	60-69 70-79 80-89 90-100		
2. Written exam					
Activity and corresponding number of points		Evaluation criterion	Evaluation criterion		
Activity	Points	Grade	Points		
- Solving of a system of equation	20	sufficient (2) good (3) very good (4) excellent (5)	60-69 70-79 80-89 90-100		
- Solving of a symbolic equation	10				
- Statistical data analysis	20				
- Identifying process models	25				
- Model development in the Simulink	25				
TOTAL	100				
3. Oral exam – as required					

University of Zagreb Faculty of Chemical Engineering and Technology

2) Name of the course: Biochemistry3) Study programme (undergraduate, graduate): undergraduate		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	 6) Learning outcomes at the level of the study programme: 1. Adopt a basic general knowledge of 	
1. Explain the biochemical processes and metabolic reactions in various organs and tissues that are important for the understanding of physiological and pathological processes.	mathematics, physics, chemistry and biology2. Appply methodology of theoretical interpretation of experimental results	
2. Explain the conditionality of three- dimensional structure and biological activity on the protein example.	3. Critical analyse the environmental problems4. Study skills and competences needed for	
3. Discuss the creation and storage of metabolic energy and the overall strategy of metabolism.	continuing professional development.	
4. Define the basic principles and the importance of the central dogma of molecular biology and the basic concepts related to the formation and structure of nucleic acids in living organisms.		
5. Explain the mechanisms of DNA replication, transcription of DNA and translation of RNA.		

Teaching unit	Learning outcomes	Evaluation criteria
1. The conformation and dynamics. Conditionality of three-dimensional structure and biological activity on the protein example. Myoglobin and	 Recognize the relationship between the natural and biomedical knowledge Compare the diversity of functions of proteins and 	 Able to write a structure of 20 amino acids. Define the structure of proteins, from primary to quaternary.

hemoglobin. Enzymes. Collagen and elastin.	 peptides. 3. Determine the amino acid structure of the protein, peptide bond, conformation, dynamic aspects of the structure and function of proteins. 4. Distinguish proteins with special functions, hemoglobin, a model globular protein and hemoglobin interaction with ligands, and myoglobin. 5. Explain the conditionality of the structure and function fibril proteins collagen and elastin 6. Explain the basics of enzyme catalysis, allosteric regulation of enzyme activity, activators and inhibitors, coenzymes and prosthetic groups 	 3. Apply the knowledge of the structure and function of proteins in the hemoglobin and myoglobin, and fibrillar proteins collagen and elastin, as well as proteins with specific functions. 4. Explain the regulation of metabolic activities of important enzymes, coenzymes and prosthetic groups
2. The creation and storage of metabolic energy. The overall strategy of metabolism.	 Explain the basic concepts and metabolic properties. Explain the metabolic degradation of glucose - the flow pathway, control and regulation, allosteric regulated enzymes, ATP production, the importance of NADH oxidation. Sketch cycle gluconeogenesis, citric acid cycle, Cori cycle. Explain the cellular bioenergetics, ATP cycle, respiratory chain and oxidative phosphorylation, oxidation cascade coenzyme NADH and FADH₂. Write the basic levels of 	 Notice the differences in the levels of certain metabolic cycles. Define the common precursors over the cycle, and the input and output components. Apply knowledge of the overall strategy of metabolism in each cycle.

	fat metabolism: decomposition of triacylglycerols and b- oxidation of fatty acids. 6. Compare the urea cycle. different ways of excretion of nitrogen from the body, alanine and glutamine cycle transfer of nitrogen from various tissues to the liver, oxidative deamination of glutamate, the flow of urea cycle, and the mechanism of toxicity of NH4 + ions in the brain.	
3. The central dogma of molecular biology.	 Define the basic principles and the importance of the central dogma of molecular biology. Explain the formation of nucleic acids in living organisms. 	 Explain the concept and importance of the central dogma of molecular biology by own way. Explain the way in which the nucleic acids are created in living organisms.
	 Define the higher structural forms of DNA in prokaryotes and eukaryotes. Explain the mechanisms of DNA replication, transcription of DNA and translation of RNA. 	 3. Explain the way for the formation of higher structural forms of DNA in prokaryotes and eukaryotes. 4. Explain the mechanisms of DNA replication, transcription of DNA and RNA translation. 5. Distinguish the replication of DNA, transcription of DNA, transcription of RNA.

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof.dr.sc. Đurđa Vasić-Rački		
2) Name of the course: Eco-engineering laboratory		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course:		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes):1. Mastering solving project task-threads in a team or independently.	1. Enable students to gain more environmental engineering practices,	
 Connect the task to search for literature- site; Library. 	2. Applying the methodology of chemical engineering to solve issues related to environmental protection.	
3. Independent Power-point used for the preparation of presentations.		
4. Mastering in writing of the final report: introduction, theoretical part, experimental part, presentation and discussion of results, conclusions, literature		
5. Mastering in presenting in front of a wider audience		

Teaching unit	Learning outcomes	Evaluation criteria
1. The first meeting of all the teachers and students, in which teachers present project topics to students, and students are allocated for a specific project.	- Defining issue of student projects	- Explain the topics of student projects
2. Students meet with teachers and mentors to elaborate the project topic	- Elaboration of project topics	- Recognition of project topics
3. The second meeting of all teachers and students in which students exhibit their	- The definition of the topic by the students	- Explanation of the topics of student projects by students

intention to seeing the project topics, and review of the literature intention to seeing the project topics, and review of the literature.		
4. Students meet mentors to elaborate experimental plan, and to introduce to laboratory	- Defining the experimental plan	- Understanding of the experimental plan
5. Students meet with mentors and according experimental design, carried out experiments in the laboratory	- Defining experimental techniques	- Understanding of experimental techniques
6. The fourth meeting of all teachers and students in which students present the results of their experimental	- Defining the methods of analysis of experimental data	- Understanding the used methods of analyzing the experimental data
measurements and their analysis of experimental data.		
7. The final meeting of all teachers and students in in which students present the whole project	- Demonstrating work in a team or individual work in solving given problems	-Way of presenting of final presentation - Written final report

1) Course teachers: Assoc. prof. dr. sc. Zvjezdana Findrik Blažević, Assoc. prof. dr. sc. Ana Vrsalović Presečki 2) Name of the course: Bioreaction technique 3) Study programme (undergraduate, graduate): graduate 4) Status of the course: optional 5) Expected learning outcomes at the 6) Learning outcomes at the level of level of the course (4-10 learning the study programme: outcomes): 1. Application of chemical engineering methodology in development of mathematical 1. To distinguish homogeneous and models for complex reaction systems heterogeneous biocatalysis 2. Applications of mathematical methods and 2. To distinguish heterogeneous biocatalysts computer techniques for evaluation of model according to the method of their preparation parameters and process simulation 3. To define basic parameters that characterize 3. Optimization of reaction system (initial process immobilized biocatalyst conditions) by using the mathematical model 4. To estimate the values of kinetic parameters of 4. Gaining practical experience in collecting the complex enzymatic system from the experimental data in the lab experimental data 5. To develop mathematical model for the complex enzymatic system (multienzyme), as well as for the process catalyzed by whole cells as biocatalyst in different types of reactors 6. To simulate the process in different types of reactor at different initial process conditions 7. To carry out the biotransformation catalyzed by purifies enzyme and permeabilized whole microorganism cells 8. To define the methods of bioproduct separation

Teaching unit	Learning outcomes	Evaluation criteria
1. Methods of preparation of heterogeneous biocatalysts	- to define the methods of preparation of heterogeneous biocatalyst	- making the difference between homogeneous and hetergeneous catalysis
	- to define and explain	- to recognize the advantages

	advantages and disadvantages of each method of immobilization - to define and explain the differences between immobilized enzymes and whole cells - to define different factors that influence the choice of biocatalyst immobilization method	and disadvantages of heterogeneous biocatalysts - evaluation of the application are of immobilized enzymes and immobilized whole cells
2. Characterization of immobilized biocatalyst	 to define reaction engineering parameters of heterogeneous biocatalysts and discuss the methods of their determination to define the methods of determination of the activity of immobilized biocatalyst to define the effectiveness of immobilized biocatalyst to define Thiele modulus 	 numbering the limitation of the use of immobilized biocatalysts ability to assesss wether the process is diffusion limited on the basis of experimental data ability to determine the activity of immobilized biocatalyst from the experimental data
3. The application of immobilized biocatalysts	- to discuss the application of heterogeneous biocatalysts and immobilized proteins in general	- ability to discuss the importance of immobilized proteins
4. Biocatalysts in non- conventional media	 to define the non-conventional media used in biotransformations to define the advantages and disadvantages of the use of non-conventional media 	- recognition of purpose of different reaction media and importance of the choice
5. Stability and deactivation of biocatalysts	 to discuss the types of biocatalyst stability to discuss the methods of determination of operational stability 	 ability to determine of operational stability of biocatalyst from the experimental data ability to estimate the biocatalyst deactivation constants from the experimental data and its incorporation in the kinetic model of the process
6. Mathematical modeling of complex enzymatic systems with coenzyme regeneration	- to develop and solve the mathematical model for multi- enzyme reaction system in different reactor types	- ability to develop and apply the mathematical for simulation and optimization of the reaction system

	 to evaluate and apply the developed mathematical model and predict the process outcome by its use to select the optimal conditions of the process by using the mathematical model 	
7. Bioprocesses catalyzed by whole cells	 to identify the products of the process catalyzed by whole cells to define the conditions of cell growth to define and explain the characteristics of cell methabolism to number the methods of metabolism regulation 	- ability to determine the possibility of production of certain product by using whole cells
8. Mathematical modeling of biomass growth	 to explain the kinetic model of microbial growth to explain the kinetic model of substrate consumption to explain the kinetic model of product synthesis to evaluate the process efficiency 	 ability to estimate kinetic parameters of the process ability to develop model of microbial growth in different types of reactor ability to determine the yield, substrate conversion, space-time yield
9. Types of bioreactors and bioprocess methods for microbial growth	 to define the types of bioreactor to define the aeration to define the types of mixing to distinguish the types of bioprocess methods for microbial growth to define the methods for bioprocess monitoring 	 ability to determine the optimal bioreactor type for a single process to estimate the volume coefficient of oxygen transfer ability to determine the optimal type of mixing in bioreactor for specific process ability to determine the type of bioprocess implementation
10. Bioproduct separation processes	 to define the methods of cell separation to define the methods for separation of products from the cell to define the methods of purification and concentration of bioproducts 	- ability to determine the optimal way of product separation

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Felicita Briški, PhD.		
2) Name of the course: Environmental Ecology		
3) Study programme - graduate: Environmental Engineering		
4) Status of the course: optional		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
 outcomes): 1. to apply the principles of industrial ecology in industrial systems 2. to calculate the flow of matter and energy for the selected production process 3. to assess the effectiveness metrics for different levels (local, national, global) 4. to choose data and sketch a simple diagram of the production system 	 to point to the systematic approach of fitting of industrial systems in the natural environment to analyze and evaluate the state of the environment to use specialized tools for designing sustainable industrial system to support collaboration and promote a team approach to solving an environmental problems 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Environment and anthrophosphere, status of resources, and industrial systems	 explain the impact and integration of anthrophosphere in the environment and regulatory approach to pollution prevention to identify the availability and accessibility of natural resources to apply the principles of industrial ecology in industrial systems to analyze the material and energy flow in the industrial system 	 describe and schematically show the anthrophosphere integration in the environment estimate availability and accessibility of a given natural resource, and evaluate its use explain the design of the production process according to the principles of industrial ecology evaluate the effectiveness of a given industrial process based on the material and energy productivity
2. Industrial ecosystems, design and product	- to compare the natural and industrial metabolism and	- explain the features of natural and industrial

development, and life-cycles of industrial products	define the components of the industrial ecosystem - to organize a team and implement industrial ecology tools for designing a new product / process - to apply life-cycle assessment	metabolism, sketch and compare an open and closed industrial system - define the team members and choose the tools to develop a given product / process - analyze the life-cycle of a given product (e.g. chemical industry, organic synthesis)
3. Corporate industrial ecology toolbox and	- to explain the phases and tools applied in the corporate	- define the phases for implementation the principles
implementation of industrial ecology in corporations	 industrial ecology to implement environmental management systems in corporations to implement a policy of pollution prevention in the corporation 	of industrial ecology for a given company - select the tools for meeting regulatory requirements for environmental pollution prevention - describe the organizational structure of environmental group in the company and explain the given norm
4. Indicators and Metrics	 to define indicators and metrics to select indicators and metrics for different spatial scales and organizational entities 	 explain the importance and development of indicators and metrics explain the most common metrics in corporations, and select indicators and metrics for a given company

Г

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Veljko Filipan, PhD, full professor; Ante Jukić, PhD, full professor; Zvonimir Glasnović, PhD, associate professor		
2) Name of the course: RENEWABLE ENERGY SOURCES		
3) Study programme (undergraduate,	graduate): graduate	
4) Status of the course: elected		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
outcomes): 1. understand the issues in the field of energy sustainability	 advanced knowledge of elementary engineering subjects 	
2. distinguish different conventional and alternative forms of energy	efficiency, reliability and adaptability in team work	
3. understand the influence of energy transformation on the environment	3. forming their own opinion and understanding global processes	
4. distinguish direct and indirect energy transformation	 efficient work and solving problems integrated by the application of basic and technical sciences 	
5. explain the roll and importance of different energy sources	5. understanding of engineering processes and their design	
6. define global energy strategy and energy strategy of EU and Croatia		

Teaching unit	Learning outcomes	Evaluation criteria
1. Basic considerations on renewable energy sources (RES)	 -recognize renewable energy systems and trends in their using - understand the role of RES 	-explain the terms such as global warming potential, green-house gas effect, sustainable energy, feed in tariffs for RES utilisation
	in energy supply systems	-explain favours and
	-list different energy storage systems	problems of a specific RES system
	-explain basic problems of	-list different energy storage

	RES utilization	systems and their
	-define global energy strategy	characteristics
	and energy strategy of EU	
	and Croatia	-recognise global energy
		strategy and energy strategy
	-understand the system	of EU and Croatia
	approach in new energetics	-describe the environmental
		effects of different energy
		production technologies
	-explain the possibilities and	
	principles of solar energy	
	utilisation	
		-describe basic principles of
	-define solar thermal energy	solar energy utilisation
	utilisation technologies and	
	equipment	-list different system
2. Solar thermal energy		equipment for solar thermal
systems (ST)	-describe working principles	energy utilisation
	of flate plate and	
	concentrating solar thermal collectors	-formulate the difference
	conectors	between short and long time
	-understand the possibilities	solar energy storages
	of solar thermal energy	
	storage	
		-explain the geothermal
3. Geothermal energy (GE)	-understand the origin of GE	gradient and GE potentials in
utilisation	and geothermal gradient	Croatia
	-distinguish the advantages	Croatia
	and disadvantages of GE	-describe the technologies of
	-classify the cascade using of	GE transformation to electric
	GE	energy
		-reproduce the cascade using
	-understand the technologies of conversion GE to electric	of GE on an example in
		Croatia
	energy	

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Bruno Zelić, PhD		
2) Name of the course: Bioseparation Processes		
3) Study programme (undergraduate, graduate): Graduate		
4) Status of the course: Elective		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
1. to apply basic principles of mass and energy conservation on physical, chemical and biochemical processes	 to solve problems by the application of basic and technical sciences to set up, recognize, formulate and solve engineering problems, including the mass and 	
 to define process space, system borders, and inlet and outlet process parameters to differentiate steady-state and non steady-state, closed and open process 	 energy balance to apply various analytical techniques, analytical and numerical methods and analytical and program tools in solving engineering problems 	
 4. to develop mass and energy balances of case studies 5. to construct process schemes of biochemical industrial processes 6. to differentiate between bioseparation 	 to create an experimental plan and to conduct the experiments to perform the supposed hypothesis to create, syntesis integrate activities related to the ecological and sustainable processes 	
processes needed for separation, isolation and purification of biochemicals	- to understande engineering processes and their design	

Teaching unit	Learning outcomes	Evaluation criteria
1. Bioseparation processes	 to apply basic principles of mass and energy conservation on physical, chemical and biochemical processes to define process space, system borders, and inlet and outlet process parameters to differentiate steady-state and non steady-state, closed 	 construct process scheme for case study and identify inlet and outlet process streams and parameters determine the base for calculation and standard conditions seek literature data needed for calculation of mass and

	 and open process to develop mass and energy balances of case studies to construct process schemes of biochemical industrial processes 	energy balances - apply the principle of mass and energy conservation and develop mass and energy balances for case study
2. Process integration	- to differentiate between bioseparation processes needed for separation, isolation and purification of biochemicals	- develop integrated bioseparation process for separation, isolation, and purification of target biochemical

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teachers: Associate. prof. Ana Lončarić Božić PhD, Assistant prof. Hrvoje Kušić PhD	
2) Name of the course: Environmental Engineering and Management	
3) Study programme: graduate	
4) Status of the course: mandatory (module 2	2)
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):6) Learning outcomes at the level of the study programme:	
 the ability to understand the concept of sustainable development within the environmental engineering and management practice. the ability to correlate the characteristics of pollution sources and the opportunities for their reduction with the features of sustainable technologies the ability to understand the main requirements of national Environmental protection law, IPPC directive and Environmental impact assessment study the ability to apply instruments of sustainable environmental engineering and management practice 	 the ability to apply fundamentals of chemical engineering in identifying and solving problems within the environmental engineering and management practice the ability to understand the role of chemical engineering in proactive approach within the environmental engineering and management practice. the ability to apply fundamental knowledge and methodological competences for solving environmental problems within the environmental engineering and management practice.

Teaching unit	Learning outcomes	Evaluation criteria
1.Introduction to environmental engineering and management; Principles of proactive approach in integrated environmental management	 be acquainted with the key requirements of national Environmental protection law adopt main terms in environmental engineering and management understand the concept of sustainable development as a pillar of environmental management adopt basic principles and elements of preventive approach in environmental 	 explain the main terms in environmental engineering and management identify sources of environmental pollution i.e. emission in soil, air and water explain the principles of noise, light and odour pollution control explain and apply proactive approach in waste management based on Cleaner production methodology

	engineering and management - understand the role of chemical engineering in environmental protection and management	- specify and apply the main principles in environmental management based on presented case study
2. Instruments of sustainable environmental management	-be acquainted with technologies of waste minimization and management - understand the risk assessment and management methodology -understand the basic principles of Environmental management systems -adopt instruments of sustainable environmental management (EMS,CP, RC) - be acquainted with the main features of IPPC directive -understand principles of EMAS and its integration in requirements national Environmental protection legislation	 specify the correlation between Environmental management systems (EMS) and other management systems such as QMS and OHSAS explain the term Best available technology as a key component of IPPC directive explain the concept and advantages of Integrated environmental management systems (IMS)

FORM 2

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Sanja Papić, PhD		
Assoc. Prof. Ana Lončarić Božić, PhD		
2) Name of the course: Risk Assessment		
3) Study programme: graduate		
4) Status of the course: mandatory (m	nodule 2)	
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
1. Define risk and explain the categories of risk, the way of expressing risk, the risk assessment procedure and risk management.	1. Basic professional knowledge of risk assessment and management in order to protect human health and the environment.	
2. Describe and classify the test methods as a vital component of the environmental risk assessment of chemicals.	 Involvement in the team work on the study on environmental protection. The analysis and the interpretation of information about the process. 	
3. Define the main factors in making an environmental risk assessment of chemicals and explain the assessment procedure.	4. Critical analysis of problems in the field of environmental protection.	
4. Define and explain the major components of risk assessment to human health from chemicals.		
5. Recognise legal requirements and basic elements of major accident hazards control for the operators of Seveso industrial sites		
6. Identify the correlation of waste management activities with specific health and safety, and environmental risks.		
7. Understand the risk assessment frameworks for household waste landfills and correlate specific activities and exposure paths with the corresponding risks.		
8.Understand the methodology of data collection and analysis within the process of risk assessment		
9.Adopt and apply qualitative and quantitative methods in risk assessment process		

University of Zagreb Faculty of Chemical Engineering and Technology

Teaching unit	Learning outcomes	Evaluation criteria
1) Introduction to risl assessment Test methods: a vital component of the environmental risk assessment of chemicals	 define risk and explain the categories of risk, the way of expressing risk, the risk assessment procedure and risk management describe and classify the test methods as a vital component of the environmental risk assessment of chemicals 	 define risk know the categories of risk know the way of expressing risk understand what includes risk assessment and risk management know the standard testing methods of chemical substances used in the assessment of environmental risk know the purpose, indicators and possible limitations of the testing methods (physico-chemical, biodegradation, bacterial toxicity, aquatic toxicity, soil, sediment and avian toxicity test methods)
· • • •	f explain the assessment	 know the procedures of environmental risk assessment according to EU Directives and know the assessment factors: aquatic STP microorganism sediment, terrestrial define the main factors (predicted environmental concentration – PEC and predicted no effect concentration - PNEC) in making an environmental risk assessment of chemicals and show examples of

		calculations
		- in general describe the procedure of environmental risk assessment of chemicals
		- know the principles of some EU Directives or international agreements which control directly or indirectly the quantities of specific chemicals or chemical classes which may be used in or discharged to the environment (EQU- Environmental Quality Objectives; BATNEEC-Best Available Techniques not Entailing Excessive Cost, Precautionary principle)
		- know and understand the tools of the major components of risk assessment to human health from chemicals (hazard assessment, dose-response, exposure assessment, risk characterization)
3. Risk assessment for industrial sites and waste landfills	 Recognise and understand specify the legal requirements for risk control at industrial sites Adopt the basic elements of major accident hazards 	 specify the main goals and requirements of Seveso II directive and their transposition into national legislation explain the correlation
	control for the Seveso industrial sites - Understand the correlation	between risk assessment elements and define their role in control of major accident hazards
	of waste management activities with specific health and safety, and environmental risks. - Understand and the risk	- define hazards according to Seveso II directive and explain the methodology of hazard identification.
	assessment frameworks for	- demonstrate of the risk matrix and explain the

	1 1 1 1 4 1 1011	
	household waste landfillsCorrelate specific activities and exposure paths with the	importance of its' application in risk management
	corresponding risks.	-list and explain the risk mitigation measures proposed within the national Waste management strategy
		-specify the sources, transportation and exposure paths for landfill gas and leachate with the risk assessment of landfill sites.
4. Qualitative and quantitative methods in risk assessment	- understand the methodology of data collection and analysis within the process of risk assessment	- list and explain the categories of scientific evidences i.e. information in risk assessment
	- adopt and apply qualitative and quantitative methods in risk assessment process -	- demonstrate the application of Bayes' law in quantitative risk assessment
		- outline and explain the conceptual model of location in risk assessment
		- specify and describe types of logic trees and their application in risk assessment
		- outline event/decision tree based on the given example
		-describe the risk analysis procedure based on fault tree – demonstrate qualitative and quantitative analysis in risk assessment based on the given example using the fault tree

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Full Prof.Katica Se	ertić-Bionda, PhD	
2) Name of the course: Environmental Protection in Petroleum Refining3) Study programme (undergraduate, graduate): graduate		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. to identify the types of contaminants (aromatic and sulphur compounds) in petroleum refining processes and petroleum	 to apply the advanced knowledge of mathematics, phisics, chemistry and elementary engineering sciences. to recognize and to solve problems 	
products application.2. to analyse the possibilities of aromatic and sulphur compounds reduction in petroleum refining processes.	regarding environmental protection.	
3. to distinguish the relevance of petroleum refining processes (catalytic cracking, catalytic reforming) regarding the application and ecological requirements on the products.		
4. to select the methods of aromatic and sulphur compounds removing from refinery wastewater streams.		
5. to relate the vehicle exhaust emissions with characteristics of fuels.		

Teaching unit	Learning outcomes	Evaluation criteria
1. Environment pollution in petroleum refining processes	- to distinguish the relevance of petroleum refining processes regarding the application and ecological requirements on the products.	- to explain the relevance of given petroleum refining process (catalytic cracking, catalytic reforming) regarding the application and ecological requirements on the products.

2.Environment pollution in transportation and application of petroleum products	- to relate the vehicle exhaust emissions with characteristics of fuels.	-to explain the relation between characteristics of given fuel (motor gasoline, diesel fuel) and vehicle exhaust emissions.

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Zlata Hrnjak-Murgić, PhD		
 2) Name of the course: Recycling and Waste Management 3) Study programme (undergraduate, graduate): graduate 		
5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:	
1. acquisition of knowledge and understanding related to the waste generation, pollution, sustainable development	1. professional knowledge of protecting the local and global environment, the enhancement and management of the environment	
2. acquisition and understanding of knowledge related to life cycle analysis (LCA)	2. to be capable of analysis and evaluation of comprehensive waste management technologies	
3. acquisition of knowledge regarding the characterization of solid waste (municipal waste) chemical and physical composition of waste	3. a critical analysis of problems in the field of environmental protection4. forming their own opinion and	
4. understanding and basic knowledge regarding the system for the disposal and recycling of solid waste and utilization of energy from burning and decomposition of waste	understanding global processes; process managing and planning	
5. understanding the technology of recovery of waste, formation of secondary materials, methods for estimating the composition of solid waste		

Teaching unit	Learning outcomes	Evaluation criteria
1. Introduction to	- to define impact of solid waste on the environment	- to adopt the knowledge of various type of waste
environmental pollution - green engineering	-to define type of solid waste:inert, hazardous, industrial- to adopt the main principles	- to explain the main postulate of green engineering and sustainable

[11
	of sustainable development	development
2. Solid waste	 to indicate the life cycle assessment (LCA), an economic analysis of the life cycle (LCC) to define characterization of municipal solid waste to indicate the methods for determination of physical and chemical properties of solid waste 	 to define life cycle assessment method and explain their importance to estimate the amount and composition of the solid waste to distinguish the main methods and properties: density, moisture, energetic value
3. Concept of solid waste management	 to define generation, collection, transport of waste to define the technologies of waste separation, washing, grinding - secondary raw materials 	 to explain the stream of waste, systems build for the transport and collection to distinguish the main technologies of: separation, washing, grinding to evaluate the secondary raw materials quality
4. Recycling	- to indicate the technologies processes of recycling, depending on the type of material (glass, paper, metal, building materials, electronic waste, plastic waste)	- to explain each type of technologies for various materials from waste: , paper, metal, building materials, electronic waste, plastic waste, hazardous
5. Incineration of solid waste	 to indicate the type of waste suitable for incineration and energy recovery to define the thermodynamics and kinetic of the incineration processes to define the technological processes for the incineration 	 -to distinguish and explain the energy value of certain types of materials -to explain the importance of theoretical evaluation of incineration thermodynamics and kinetic -to distinguish the main technologies for the incineration
6. Landfills	- to indicate the terms for the selection of landfill position	- to explain importance and significance of landfill

 to indicate the components of modern landfills, to define the formation of landfill gas and landfill leachate to define the system for control and management of 	 position to distinguish the main components of the modern landfills to define the systems for drainage of water, gas, controlling drinking water,
landfill	treatment of landfill leachate

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Marija Vuković Domanovac, PhD		
2) Name of the course: Bioremediation		
3) Study programme (undergraduate,	graduate): graduate	
4) Status of the course: optional		
5) Expected learning outcomes at the level of the course (4-10 learning)6) Learning outcomes at the level of the study programme:		
outcomes): 1. to recognize sources and causes of water pollution and soil	1. to relate the causes and consequences of environmental pollution in the analysis of indicators of the state of the environment	
2. to define microbiological processes and environmental factors	2. to use the methodology of ecological engineering in the development process	
3. to link economic and environmental factors in the application of process of bioremediation	3. to apply eco-engineering approach in assessing justifiability of using certain technologies to protect the environment	
4. to choose an acceptable process of bioremediation in solving environmental problems	4. to choose technology with the aim of reducing the negative environmental impacts, and consumption of raw materials and natural resources for sustainable development	

Teaching unit	Learning outcomes	Evaluation criteria
1. Fundamentals of bioremediation	- to define the process of bioremediation	- explain the essence of the process of bioremediation
	 to explain microbiological processes to point out advantages and limitations of bioremediation 	 recognize microbiological processes depending on the type of environmental pollution indicate the advantage and limitations of bioremediation
2. The implementation of bioremediation	- to explain <i>in situ</i> bioremediation	- indicate technique of <i>in situ</i> bioremediation
	 to explain <i>ex situ</i> bioremediation to point out biostimulation 	 indicate techniques of <i>ex</i> <i>situ</i> bioremediation indicate effects of

	bioaugmentation in the
	0
	bioremediation processes
to select the optimal	- explain the relationship
	between process and environmental factors in the
tes	process of bioremediation
to point out connection	- identify pollutants and isolate microorganisms
id microorganisms involved	responsible for
bioremediation	bioremediation
to explain more effective	- indicate the factors
	important for a more efficient way of implementation of
	bioremediation
to interpret examples of	- propose a method of
,	bioremediation of pollution caused by organic substances
-	
ollution	- propose a method of bioremediation of pollution
to give examples of	caused by inorganic
	substances
ollution	- indicate techniques and mechanisms of
to interpret	phytoremediation
nytoremediation and give	
	vironmental conditions of odegradation and polluted es o point out connection tween of certain pollutants d microorganisms involved bioremediation o explain more effective ethod of bioremediation plementation o interpret examples of oremediation of oil, lorinated phenols, and roaromatic compounds llution o give examples of oremediation of metals, imonia and nitrate llution o interpret ytoremediation and give

 Course teacher: Vesna Tomašić Name of the course: Catalytic reactors Study programme (undergraduate, graduate): Environmental Engineering (graduate) Status of the course: mandatory (optional) 				
			5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:
			 define process variables and parameters of chemical reactors analyze experimental data in order to determine the kinetic model consider the kinetics of reactions in homogeneous and heterogeneous systems identify key variables necessary for the performance of the catalyst explain classification of catalysts according to the structure, function and conditions of their use select the appropriate laboratory reactor to determine the kinetics of catalytic and non- catalytic reactions estimate the values of kinetic model parameters choose the appropriate type reactor with respect to the features of the reaction system, the features of the process, the reaction rate and working conditions 	 advanced knowledge of mathematics, physics, chemistry and biology advanced knowledge of elementary engineering subjects setting, recognition, formulation and solution to engineering problems, including the balance of matter and energy the conducting of experiments and explaining the data retrieved during the experiment active participation in creative, synthetic and integrative activities related to the ecological and sustainability processes understanding of engineering processes and their design.

Teaching unit	Learning outcomes	Evaluation criteria
---------------	-------------------	---------------------

University of Zagreb Faculty of Chemical Engineering and Technology

	- assess the importance of	- explain how and why the
Catalysis	 assess the importance of catalytic processes for national economy compare homogeneous vs. heterogeneous catalysis consider the basic characteristics of the catalyst identify key variables necessary for the performance of more active, selective and stable catalyst recognize the relationship between the structural and chemical properties of the catalyst and its catalytic properties determine the physical, chemical, mechanical and catalytic properties of the catalyst identify key variables necessary for the performance of more active, selective and stable catalyst distinguish kinetic models of reactions in homogeneous and heterogeneous systems consider differences between macrokinetics and microkinetics select the appropriate laboratory reactor to determine the kinetics of catalytic reactions 	 explain how and why the catalyst affects the reaction rate explain the basic principles of homogeneous and heterogeneous catalysis describe and explain the different catalytic processes analyze and explain the influence of the composition of the catalyst on its activity, selectivity and stability apply different analytical methods suitable for the characterization of catalysts develop kinetic models for heterogenous catalytic reactions based on the analysis of the mechanism of the reaction explain the difference between intrinsic and apparent reaction rate examine the impact of interand intraphase diffusion on the reaction for estimation of influence of the inter- and intraphase diffusion apply appropriate experimental approach or theoretical criterion rate
Classification of catalytic	- describe an integrated	- give examples of different
reactors	approach to the development of catalysts and reactors - identify factors that influence the choice and performance of the catalytic reactor - analyze and compare the performance of the reactor for given homogeneous and heterogeneous catalytic processes - explain methods for separation of catalyst and reaction products on the example of homogeneous catalytic reactions	designs of reactors that are applied in the system of gas- liquid-solid - compare the general features of the process that is carried out in liquid and gas phase - give examples of industrial catalytic processes which are carried out in multiphase reactors - select the appropriate method of separation of the catalyst with respect to the desired process

Specific features of the fixed bed reactors	 analyze the performance of catalytic reactors with fixed bed catalyst explain the advantages and disadvantages of the fixed bed reactor compared to other types of reactors analyze the working principle of adiabatic reactor define the conditions for adiabatic operation of the reactor analyze the flow through a fixed bed reactor explain the factors that lead to deviations from the ideal flow conditions inside the reactor interpret the terms of the axial and radial dispersion 	 give examples of reactors with fixed bed catalyst calculate the temperature sensitivity of reaction give examples of processes that are carried out in adiabatic reactors describe different versions of adiabatic reactor and the principle of their work specify the criteria that determine the maximum allowed pressure drop in the reactor
Moving bed reactors	 analyze the basic principle of work of the moving bed reactors describe the advantages and disadvantages of moving bed reactors analyze the processes of heat and mass transfer in the suspension reactors apply appropriate experimental methods and theoretical correlations for assessment of the mass transport limitations on the overall reaction rate in the slurry reactor 	 summarize the advantages of the moving bed reactors in relation to other types of reactors compare the fixed bed reactors and the moving bed reactors with regards to the pressure drop inside the reactor distinguish and compare different types of suspension reactors and describe how their work

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Marija Vuković Domanovac, PhD Prof. Felicita Briški, PhD		
2) Name of the course: Solid Waste Composting		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course: optional		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
outcomes): 1. to collect the basic knowledge related to the terminology, division and basic data on waste	 to use basic professional knowledge in the field of waste management to analyze and estimate an integrated waste management system 	
2. to describe the technology of waste treatment and disposal of solid waste	management system3. to analyze, optimize, plan, and manage the composting process	
3. to analyze the characteristics of composting materials, to define process equipment and input and output values of composting process	4. to select process equipment with the highest energy efficiency and to assess the economic viability of the overall process	
4. to set up mass and energy balances for a given composting materials and to sketch diagrams of composting process		

Teaching unit	Learning outcomes	Evaluation criteria
1. Introduction to basic data on waste	 to define the types of waste to define specific categories of waste to indicate the recovery and/or disposal of waste to assemble the legislation and planning documents related to the issue of waste management 	 distinguish waste according to place of generation and properties recognize regulations related to special categories of waste distinguish between material and energy recovery and estimate the possibilities of waste disposal use of legislation in the field

		of waste management
2. Waste treatment	 to explain the mechanical - biological waste treatment (MBT) to explain the thermal treatment of waste to indicate the possibilities of advanced methods of waste treatment to assemble the legislation and documentation relating to the procedures for the treatment of waste 	 interpret basic ways of waste treatment distinguish physic, chemical and biological processes of waste treatment explain the criteria for the application of more advanced methods of waste treatment use of legislation in the field of waste management
3. The purpose and objectives of composting, the choice of substrate and systems for composting, composting factors, microbiology and mechanisms of aeration	 to explain the objectives of composting to define the potential of selected substrates and select the composting systems to select the factors affecting composting to identify types of microorganisms essential for composting to analyze the mechanisms and explain the importance of optimizing the aeration during composting 	 compare aerobic and anaerobic process treatment of solid waste and explain the significance and application of these processes. explain essential chemical and physical properties of composting materials compare types of reactor and non-reactor systems assess the importance of different groups of microorganisms in the composting process explain the influence of air flow on the process and to sketch the air flow through the composting mass and oxygen transfer in multiphase system
4. Thermodynamics, mass and energy balances in composting process, the selection of process equipment and process control	 to explain the mechanisms of heat transfer and thermal properties of compost to set up mass and energy balances for selected substrates and systems to show kinetics of growth of microorganisms and their 	 describe mechanisms of heat transfer during the process and select the mathematical expression that describe it develop a reactor process model explain empirical kinetic

 inactivation by evolved heat, and to analyze empirical kinetic models to describe planning and designing the systems for composting to apply the acquired knowledge in the selection of process equipment 	 models for the given examples assess the economic viability of the reactor system apply mathematical model for higher efficiency of composting process
---	--

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Zlata Hrnjak-Murgić, PhD			
2) Name of the course: Polymer Waste Management			
3) Study programme (undergraduate, graduate): graduate			
4) Status of the course: elective	4) Status of the course: elective		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:		
 outcomes): 1. acquisition, understanding and analyzing the basic knowledge related to the synthesis, chemical composition, structure, production, properties and application of polymer materials 2. acquisition, understanding and analyzing the basic knowledge related to the technology of recycling polymer materials, incineration and biodegradation 3. acquisition of the ability to understand the methods of process control and quality control of recycled products 4. ability to work independently in chemical and physical laboratory 5. ability of self presentation and interpretation of laboratory results in written 	 to use basic professional knowledge in the field of waste management to analyze and estimate an integrated waste management system knowledge of various kinds of materials and technologies for their recycling the ability to create solutions and independently solve problems (including the identification and formulation of the problem) in materials science and engineering 		

Teaching unit	Learning outcomes	Evaluation criteria
1. Introduction to polymer chemistry	 to indicate the basic terms of polymer chemistry : monomers, polymers, macromolecules, to acquire knowledge about the polymer synthesis processes 	 to define the basic terms in polymer chemistry distinguish the synthesis processes to obtain different type of polymers
2. Polymer waste stream, advantages and disadvantages	- acquisition of knowledge and understanding of the	-distinguish the type of polymer waste

of polymer materials	types of polymeric materials in the application, their collection, the pretreatment processes, secondary raw materials for recycling	 - indicate the procedures and processes of polymer pretreatment: collection / sorting-separation / shredding / washing -to define the hazardous
		waste in polymeric materials
3. Recycling of polymeric materials	-to indicate the different technological processes for polymer recycling	- to distinguish the technological processes for plastics recycling
	-to explain the properties and quality control of recyclate	- to indicate the properties of the recycled polymers and products
4. Recycling of polymeric materials	- acquisition of knowledge and understanding about the mechanical recycling of polymer waste	- to define mechanical recycling - extrusion, injection / molding / recycling of heterogeneous polymer waste, recycling and accessories for quality control
5. Recycling of polymeric materials	- acquisition of knowledge and understanding about the chemical recycling of polymer waste	- to define chemical recycling - hydrolysis / gasification / hydrating / pyrolysis
6. Incineration - energy recovery and rubber recycling	- acquisition of knowledge and understanding about the energy recovery of polymer	- to define stoichiometric ratio of plastic waste for combustion
	waste - to indicate rubber recycling	- to explain the energetic value of various types of plastic waste
		- to define combustion technological processes
		- to define recycling rubber and tires -mechanical / chemical recycling

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Krešimir Košutić (Full Professor)		
2) Name of the course: Membrane technology of water treatment		
3) Study programme (undergraduate, graduate): The graduate study of Environmental engineering and Applied chemistry		
4) Status of the course: optional		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
outcomes): -Knowledge of materials for membrane preparation, preparation methods and the methods of characterization - Classify membrane processes according to the driving force,	 advanced knowledge of mathematics, physics, chemistry and biology; advanced knowledge of elementary engineering subjects; 	
 Knowledge of membrane systems design Define mass transfer through the membrane, flux, define separation mechanisms Knowledge of the application of membrane technology in the water treatment: microfiltration, ultrafiltration, nanofiltration and reverse osmosis, HERO processes, electrodialysis Prepare and make laboratory experiments, analyze and interpret the results of experiments Prepare laboratory reports 	 3. professional knowledge of protecting the local and global environment, the enhancement and management of the environment, the legislation related to the protection of the environment; 4. professional knowledge from the field of water, air and ground management, waste and energy management; 5. independence and reliability in independent work; 	
- Get acquainted with the industrial RO desalination plant of brackish water through field-education	6. efficiency, reliability and adaptability in team work;7. the conducting of experiments and explaining the data retrieved during the experiment;	
	8. active participation in creative, synthetic and integrative activities related to the ecological and sustainability processes;	
	9. understanding of engineering processes and their design	

Г

University of Zagreb Faculty of Chemical Engineering and Technology

٦

7) Teaching units with the corresponding learning outcomes and evaluation criteria		
Teaching unit	Learning outcomes	Evaluation criteria
12.The membrane; Membrane processes; membrane modules	 Define the concept of membranes, knowledge of various kinds materials for preparation membranes and membrane classify, Define performance membranes, their selectivity and other physical and chemical characteristics Classification of membrane operations by the driving force - Classify basic types of membrane modules that are applied in practice, recognize their strengths and weaknesses 	Explain membrane processes in terms of the membrane, feed, retentate, permeate List types of industrial membrane processes Discuss membrane shapes and membrane modules
36. Membrane systems- design	 Define dead-end and cross- flow Describe single and multi- stage process, and batch system for smaller applications Define dead-end and hybrid / cross-systems Identify advantages cascading operations 	Explain use of dead-end and crosss-flow membrane operation Explain use and advantages/disadvantages of cascades operations Calculate and estimate of conversion in spiral modul
78. Mass transfer through the membrane, mass transport models	 Define and describe the mass transfer through the membrane (water transport, salt transport, specific flux) Define the principles of retention and separation mechanism Describe and distinguish of concentration polarization and membrane fouling-causes and ways of preventing in 	Explain mass transfer of water and salt through membrane List membrane separation mechanism Explain concentration plarization List and explain causes of membrane fouling

	practice - Explain membrane permeation- permeation of gas, gas diffusion, pervaporation, membrane distillation -list and describe the electrical membrane processes (electrodialysis, membrane electrolysis,	
	 bipolar membrane) Prepare and make a laboratory exercise RO / NF separation saline solution, processing and analysis of measurement data, and write a lab report 	
913. Pressure membrane processes: microfiltration, ultrafiltration, nanofiltration reverse osmosis, HERO process	 Describe the application of membrane processes MF, UF, NF and RO in water tretment argue application: the case of industrial obtaining drinking water from the sea, from brackish water, getting ultrapure water 	Explain osmosis and how reverse osmosis can be achived Differentiate between the asymmetric and thin layer composite membranes, and between microporous and dense membranes Explain desalination of sea and brackish water by reverse osmosis and nanofiltration
14. Electric membrane processes	-be able to describe principles of electrodialysis; membrane electrolysis, bipolar membranes and fuel cells	Expalin structure of cationic and anionic ion exchange membranes Explain mass transfer in dialysis and electrodialysis

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Full Prof. Ante Jukić, PhD, Assoc. Prof. Elvira Vidović, PhD		
2) Name of the course: Environmental Protection in Petrochemical Industry		
3) Study programme (undergraduate, graduate): graduate		
6) Learning outcomes at the level of the study programme:		
1. professional knowledge of protecting the local and global environment, the enhancement and management of the environment, the legislation related to the protection of the environment		
 recognition and finding solutions to problems regarding environmental protection understanding of engineering processes and their design 		
4. dedication to professional ethics and responsibility towards the norms of the engineering practice		

Teaching unit	Learning outcomes	Evaluation criteria
1. The significance of petrochemical industry and its influence on the environment	- to analyze petrochemical industry regarding: row materials (petroleum, natural gas, coal, biomass), processes and products-technological, economical, ecological,	- to explain the importance and structure of petrochemical industry and its influence on the modern everyday life

	social and geopolitical aspects	
2. Application of BAT concept on industrial production of ammonia	- to explain the advantages and disadvantages of given processes including application of BAT	- to assess the process regarding the ecological, technological and economical view

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Helena Otmačić Ć	urković	
2) Name of the course: Corrosion and environment3) Study programme (undergraduate, graduate):graduate		
5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:	
 outcomes): 1. identify hazards that corrosion and inadequate corrosion protection present to environment and human health; 2. identify how some of the corrosion protection methods may endanger environment and human health due to the release of toxic compounds; 3. estimate which corrosion protection method is the most adequate for given corrosion issue; 4. relate presence of pollution and climatic parameters to the corrosion level of various structural materials. 	 advanced knowledge of corrosion engineering professional knowledge of protecting the local and global environment, recognition and finding solutions to problems regarding environmental protection; conducting of experiments and explaining the data retrieved during the experiment; 	

Teaching unit	Learning outcomes	Evaluation criteria
1. Environment pollution	 indentify common sources of pollution discuss different approaches towards reduction of pollution caused by industry 	 student should indentify the most common sources of pollution student should explain the principles of sustainable development
2. Corrosion processes	-explain causes of corrosion -distinguish various types of corrosion processes	- identify causes of corrosion and possible type of corrosion that will occur for specific material in given environment.

		-write corrosion reactions for selected combination metal- environment
3. Harmful substances released to environment due to the corrosion or in corrosion protection	 -explain which harmful substances can be released to environment due to the corrosion or in corrosion protection - explain the influence on environment and human health of the most common pollutants related to the corrosion processes 	-name harmful compound that can be released from particular construction or process related to corrosion protection and explain its influence on environment and human health
4. Corrosion damage	 -analyze the importance of corrosion protection for safe operation of various industrial processes and stability of metallic constructions, - identify the critical parts of metallic constructions or technological processes where inadequate corrosion protection may cause serious damage 	 -explain the causes of known corrosion failure -experimentally determine the corrosion rate of metallic materials used in medicine as implants.
5. Influence of environment parameters on corrosion type and rate	 -correlate changes in environment with corrosion stability of metallic materials - relate presence of pollution and climatic parameters to the corrosion level of various structural materials 	 explain key factors that lead to damage of cultural heritage and other constructions in polluted environment experimentally determine corrosion rate of bronze in different environments
6. Corrosion protection methods	 identify potential hazards of application of various corrosion protection methods explain which modifications in existing corrosion protection methods are 	-explain potential hazards of some corrosion protection method and how they can be overcome

needed to comply with recent	
environmental regulation	

1) Course teacher: Prof. dr. sc. Đurđa Vasić-Rački

Assoc. prof. dr. sc. Zvjezdana Findrik Blažević

2) Name of the course: Environmental engineering project

3) Study programme (undergraduate, graduate): graduate

4) Status of the course: obligatory

5) Expected learning outcomes at the level of the course (4-10 learning	6) Learning outcomes at the level of the study programme:
outcomes):	1. Analysis and optimization of process plant by
1. To define the theoretical background of process plant design.	using the computer program 2. Application of chemical engineering
2. To apply the principles of mass and energy conservation laws on the project assignment.	methodology on the development of environmentally friendly process.
3. To sketch the process scheme and specify process units and flows.	3. Application of computer program, and computer techniques in general in modeling and process optimization.
4. To write a mathematical model of the chemical or physical process in the project assignment on the basis of input data.	4. Recognition and finding solutions to problems regarding environmental protection.
5. To simulate the example in the project assignment by using the programme packagge SuperPro Designer	
6. To design the process units by using SuperPro Designer.	
7. To optimize the process considering the oputput values.	

Teaching unit	Learning outcomes	Evaluation criteria
1. Basics terms in process design. Project organization.	- to define and explain the roles of investors and designer	- explain the roles of investor and designer
	- to define the factors that affect the choice of process plant location	- explain how the process plant location is chosen
	- to define the phases in project realization	- number and describe the phases of project realization
2. Contracts – regulation of relationship between the investor	- to define the types of contracts	- distinction and recognition of advantages and disadvantages of

and designer	between investor and designer - to define the advantages and disadvantages of each contract type	types of contract between investor and designer
3. Research and process development. Process development phases.	 to explain the role of chemical engineer in process development to define the possibilities of technological process development to define the phases of process development to discuss technical problems of scalue up 	 explain the role of chemical engineer in process development number the phases of process development and the possibilities of technological process development explain the problems with process scale up
4. Process rating. Feasibility study of the process. Production costs differentiation. Financial effect of investment	 to define the expenses of the process development to define the cumulative money flow during investment 	- number and explain the types of expenses in process development
5. Project assignment. Process schemes. Block schemes. Process flow scheme.	 to define the important features of process assignment to define the types of process schemes to summarize and apply the accumulated knowledge during studies on project assignment 	 to define the project assignment and process scheme on the basis of given example use the mathematical model to describe the given process and incorporate it in the project optimization of the given process by using the program SuperPro Designer
6. Pipes and instrumetation. Process control and instrumentation. Process safety.	 to define P&I diagram to define and explain the features that affect the process safety 	 explain the significance of P&I diagram explain the important features for process safety
7. Detail process design. Project programme. Plant schedule.	 to define the contents of project program to define and explain the important steps in the schedule of process plant 	 explain the important facts for detail process design explain the way to determine the schedule of process units in process plant
8. Auxiliaries and objects. Environmental assessment.	 to define the auxiliaries and objects neccessary in the process plant to define and explain the environmental assessment study 	 number the auxiliaries and objects necessary in the process plant explain the legal basis of environmental assessment and explain what it means

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teachers: Assoc. prof. dr. sc. Zvjezdana Findrik Blažević, Assoc. prof. dr. sc. Ana Vrsalović Presečki		
2) Name of the course: Bioreaction technique		
3) Study programme (undergraduate, graduate): graduate		
4) Status of the course: optional		
5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:		
outcomes): 1. To distinguish homogeneous and heterogeneous biocatalysis	1. Application of chemical engineering methodology in development of mathematical models for complex reaction systems	
2. To distinguish heterogeneous biocatalysts according to the method of their preparation	2. Applications of mathematical methods and computer techniques for evaluation of model parameters and process simulation	
3. To define basic parameters that characterize immobilized biocatalyst	3. Optimization of reaction system (initial process conditions) by using the mathematical model	
4. To estimate the values of kinetic parameters of the complex enzymatic system from the experimental data	4. Gaining practical experience in collecting experimental data in the lab	
5. To develop mathematical model for the complex enzymatic system (multienzyme), as well as for the process catalyzed by whole cells as biocatalyst in different types of reactors		
6. To simulate the process in different types of reactor at different initial process conditions		
7. To carry out the biotransformation catalyzed by purifies enzyme and permeabilized whole microorganism cells		
8. To define the methods of bioproduct separation		

Teaching unit	Learning outcomes	Evaluation criteria
1. Methods of preparation of heterogeneous biocatalysts	- to define the methods of preparation of heterogeneous biocatalyst	- making the difference between homogeneous and hetergeneous catalysis
	- to define and explain advantages and disadvantages of each method of immobilization	- to recognize the advantages and disadvantages of heterogeneous biocatalysts

	 to define and explain the differences between immobilized enzymes and whole cells to define different factors that influence the choice of biocatalyst immobilization method 	- evaluation of the application are of immobilized enzymes and immobilized whole cells
2. Characterization of immobilized biocatalyst	 to define reaction engineering parameters of heterogeneous biocatalysts and discuss the methods of their determination to define the methods of determination of the activity of immobilized biocatalyst to define the effectiveness of immobilized biocatalyst to define Thiele modulus 	 numbering the limitation of the use of immobilized biocatalysts ability to assess wether the process is diffusion limited on the basis of experimental data ability to determine the activity of immobilized biocatalyst from the experimental data
3. The application of immobilized biocatalysts	- to discuss the application of heterogeneous biocatalysts and immobilized proteins in general	- ability to discuss the importance of immobilized proteins
4. Biocatalysts in non- conventional media	 to define the non-conventional media used in biotransformations to define the advantages and disadvantages of the use of non-conventional media 	- recognition of purpose of different reaction media and importance of the choice
5. Stability and deactivation of biocatalysts	 to discuss the types of biocatalyst stability to discuss the methods of determination of operational stability 	 ability to determine of operational stability of biocatalyst from the experimental data ability to estimate the biocatalyst deactivation constants from the experimental data and its incorporation in the kinetic model of the process
6. Mathematical modeling of complex enzymatic systems with coenzyme regeneration	 to develop and solve the mathematical model for multi- enzyme reaction system in different reactor types to evaluate and apply the developed mathematical model and predict the process outcome 	- ability to develop and apply the mathematical for simulation and optimization of the reaction system

FORM 2

7. Bioprocesses catalyzed by whole cells	 by its use to select the optimal conditions of the process by using the mathematical model to identify the products of the process catalyzed by whole cells to define the conditions of cell growth to define and explain the characteristics of cell 	- ability to determine the possibility of production of certain product by using whole cells
	methabolism - to number the methods of metabolism regulation	
8. Mathematical modeling of biomass growth	 to explain the kinetic model of microbial growth to explain the kinetic model of substrate consumption to explain the kinetic model of product synthesis to evaluate the process efficiency 	 ability to estimate kinetic parameters of the process ability to develop model of microbial growth in different types of reactor ability to determine the yield, substrate conversion, space-time yield
9. Types of bioreactors and bioprocess methods for microbial growth	 to define the types of bioreactor to define the aeration to define the types of mixing to distinguish the types of bioprocess methods for microbial growth to define the methods for bioprocess monitoring 	 ability to determine the optimal bioreactor type for a single process to estimate the volume coefficient of oxygen transfer ability to determine the optimal type of mixing in bioreactor for specific process ability to determine the type of bioprocess implementation
10. Bioproduct separation processes	 to define the methods of cell separation to define the methods for separation of products from the cell to define the methods of purification and concentration of bioproducts 	- ability to determine the optimal way of product separation

 Course teacher: Prof. Sanja Papić, PhD Name of the course: Organic dyes and environment protection 	
3) Study programme (undergraduate,	graduate): graduate
4) Status of the course: elective course	
 5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 6) Learning outcomes at the level of the study programme: Basic professional knowledge of water 	
 Explain the basic concepts of color and correlations between the chemical structure of organic compounds and their color (coloration theory) State the areas of application and classification of organic dyes Describe the processes of production of selected organic dyes Identify the parameters that determine the emission of dyes in the environment Explain the problems of the presence organic dyes in the environment and predict the possible solutions State the actors of impact assessment of dyes on human health and the environment Explain the principles of responsible care essential for the sustainable development of organic dye industry 	 nanagement, soil, air and waste 2.Critical analysis of problems in the field of environmental protection 3. Problem solving in the field of environmental protection

Teaching unit	Learning outcomes	Evaluation criteria
	-explain the basic concepts of	-define the basic concepts of
	color and correlations	color
1. Organic synthetic dyes	between the chemical	-explain the coloration
	structure of organic	theory
	compounds and their color	- know the classification of
	(coloration theory)	dyes
	-state the areas of application	- list the chemical and the

	Γ	
	and classification of organic dyes -describe the processes of production of selected organic dyes	 application groups of dyes know the application fields of organic synthetic dyes know the method of production (synthesis) of selected dyes from important chemical classes
2.Ecological and toxicological aspects of organic synthetic dyes	-identify the parameters that determine the emission of dyes in the environment -explain the problems of the presence organic dyes in the environment and predict the possible solutions -state the ecological and toxicological aspects of dyes -list the factors of impact assessment of dyes on human health and the environment	 -know the sources of environmental pollution with dyes -know the parameters that determine the emission of dyes in the environment - explain the problems of the presence organic dyes in the environment and predict the possible solutions -know the ecological and toxicological aspects of dyes - know about the problem in occupational exposure to dyes - know what data containing Safety Data Sheet for dyes -know the requirements for food dyes -know the factors of impact assessment of dyes on human health and the environment - specify a key legislation for dyes
3. The principles of responsible care in the industry of organic dyes and pigments	-explain the principles of responsible care essential for the sustainable development of the organic dyes industry	 know the principles of responsible care know about the activities of ETAD (Ecological and Toxicological Association of Organic Dyes and Pigments Manufacturers) in the protection of health and the environment during production, transport, use and

	disposal of organic dyes; and ETAD contribution to sustainable development.

University of Zagreb Faculty of Chemical Engineering and Technology

1) Course teacher: Prof. Sanja Papić, PhD Prof. Ana Lončarić Božić, PhD,

Assistant professor Hrvoje Kušić, PhD

2) Name of the course: Advanced Oxidation Technologies

3) Study programme (undergraduate, graduate): graduate

4) Status of the course: elective

5) Expected learning outcomes at the level of the course (4-10 learning outcomes): 6) Learn the stud

1. Define and classify the advanced oxidation processes; describe their role in the environment protection; identify their advantages and possible disadvantages in water/wastewater treatment

2. Explain the characteristics of OH radicals and mechanisms of degradation of organic compounds by radical species.

3. Describe the reacting systems, explain the impact of process parameters and discuss the application characteristics of different types of advanced oxidation processes.

4 the ability to understand theoretical background and to apply photo-AOTs

5. the ability correlated the semiconductor structure with their photocatalytic properties in photo-AOTs

6. the ability to understand theoretical background and to apply US based AOTs7. the ability to correlate basic principles of

water radiolysis and high-voltage electrical discharge processes with their application characteristics in water treatment technologies 6) Learning outcomes at the level of the study programme:

 Basic professional knowledge in the field of application of advanced oxidation technologies for water treatment
 Ability to analyze and optimize the technology of water treatment based on advanced oxidation processes
 Gathering and interpreting information about the process
 Problem solving in the field of water protection by applying the methodology of analytical procedures and methodologies of chemical engineering

criteria		
Teaching unit	Learning outcomes	Evaluation criteria
Introduction, Chemical advanced oxidation processes	 define and classify the advanced oxidation processes; describe their role in the environment protection; identify their advantages and possible disadvantages in water/wastewater treatment explain the characteristics of OH radicals and mechanisms of degradation of organic compounds by radical species describe the reacting systems, explain the impact of process parameters and discuss the application characteristics of different types of advanced oxidation processes 	 know the types of AOPs, their application and advantages in comparison to conventional water treatment processes explain the direct and indirect mechanism of oxidation of organic compounds by ozone know the chemical reactions, reaction mechanism, impact of process parameters, reactor systems and application characteristics (for homogeneous and heterogeneous Fenton type processes, ozonation, catalytic ozonation and peroxone process) explain the enhancement of effectiveness of chemical advanced oxidation processes by applying UV irradiation. give an example of research kinetics of degradation of selected organic pollutant in water/wastewater by advanced oxidation

2. Photochemical and	- understand the theoretical	- explain the relationship
Photocatalytic advanced	background and mechanisms	between energy and
oxidation processes	involved in photo-AOTs; direct photolysis, UV/H ₂ O ₂ and UV/TiO ₂ - understand the influence of key process parameters on degradation efficiency of water pollutants - correlate the semiconductor structure with their role in photocatalytic AOTs	 between energy and irradiation wavelength demostrate the application of Lambert-Beer's, I and II photochemistry laws to describe processes of direct photolysis outline chemical equations describing degradation mechanisms of organics in water by UV, UV/H₂O₂ i UV/TiO₂ processes specify the key process parameters and their influence on process effectiveness describe phenomena of electron-hole generation and related mechanisms within photocatalytic AOTs list the main characteristics and explain the advantages
3. Mechanical and electrical advanced oxidation processes	 - understand the theoretical background of ultra sound (US) processes within AOTs -correlate the theoretical background of water radiolysis and high-voltage electrical discharge processes with their application characteristics in water treatment technologies 	 -describe and explain the cavitation mechanism -outline main chemical reactions in US AOTs for water treatment -explain high-voltage electrical discharge phenomena -outline configurations of Corona discharge rectors - describe mechanisms of water radiolysis -describe examples of practical application of radiolysis and high-voltage electrical discharge processes for water treatment

University of Zagreb Faculty of Chemical Engineering and Technology

 Course teacher: Prof. Zlata Hrnjak-Murgić, PhD Name of the course: Polymer Science and Technology Study programme (undergraduate, graduate): graduate 				
			4) Status of the course: elective	
			5) Expected learning outcomes at the level of the course (4-10 learning6) Learning outcomes at the level of the study programme:	
outcomes):1. to collect the basic knowledge about main polymerization reactions2. to describe and understand the the types of homogeneous and heterogeneous polymerization processes	 application of scientific principles underlying chemistry and chemical engineering on materials, their structure, properties, processing and performance ability to function effectively as an individual or as a member of a multi- disciplinary team, and to present the work in 			
 3. to understand the relationship structure – properties of polymer materials 4. to learn important technologies for polymer processing 5. to understand the knowledge related the 	 both written and oral form; 3. skills necessary for running chemical and physical laboratories, selection and preparation of adequate laboratory equipment and organization of laboratory work 			
 polymer degradation and stability according to standards; an introductionary knowledge to advance materials and technologies 				

Teaching unit	Learning outcomes	Evaluation criteria
1. The main polymerization reactions	- to define mechanisms of polymerizations: chain, step, ionic polymerisation	-to interpret polymerization processes
	- to define the main types of synthesized polymers (polyolefines, polyesters, polyamides)	-to distinguish different type of polymerizations-to recognize the type of condition and type of structure
	- acquisition of knowledge and understanding influence	that is formed
	of catalysts type, temperature and time on formation of	

	polymer chain structure and of molecular weight	
2. The homogeneous and heterogeneous polymerization processes	 to indicate the type of polymerizations: in bulk, in solution, emulsion, suspension to indicate the different reactors for polymerizations 	 -to define the polymerization types: advantages and disadvantages - to explain the differences between the reactors
 3. the relationship structure properties of polymer materials 	 to explain the importance of the structure – properties relationship to indicate the importance of creating a different structure of polymer chain 	 to define and explain properties of polymers in relations with applications to distinguish the importance of different polymer chain structures
4. Technologies for polymer processing	 to indicate basic type of polymer processing technologies: extrusion, injection, pressing, blowing to indicate the main equipment and conditions for polymer processing 	 -to define type of polymer processing -to define main processing equipment for polymers - to explain effect of conditions of production on the properties
5. Polymer degradation and stability	 to indicate the properties of polymer materials acquisition of knowledge about the main types of polymer degradation and their mechanism to indicate the mechanism of stabilization processes 	 -to define various properties of polymer: chemical properties, mechanical, physical - to define degradation processes of polymers: photodegradation, thermodegradation, oxidative degradation - to explain the importance of polymer stabilization
6. Biopolymers	 acquisition of knowledge about biopolymers to indicate biodegradation processes 	 -to define biopolymers and biodegradation - to explain sustainable development: advantages and disadvantages of biopolymers

1) Course teacher: Vesna Tomašić						
 2) Name of the course: Catalytic reactors 3) Study programme (undergraduate, graduate): Environmental Engineering (graduate) 4) Status of the course: mandatory (optional) 						
					5) Expected learning outcomes at the level of the course (4-10 learning outcomes):	6) Learning outcomes at the level of the study programme:
					 define process variables and parameters of chemical reactors analyze experimental data in order to determine the kinetic model consider the kinetics of reactions in homogeneous and heterogeneous systems identify key variables necessary for the performance of the catalyst explain classification of catalysts according to the structure, function and conditions of their use select the appropriate laboratory reactor to determine the kinetics of catalytic and non- catalytic reactions estimate the values of kinetic model parameters choose the appropriate type reactor with respect to the features of the reaction system, the features of the process, the reaction rate and working conditions 	 advanced knowledge of mathematics, physics, chemistry and biology advanced knowledge of elementary engineering subjects setting, recognition, formulation and solution to engineering problems, including the balance of matter and energy the conducting of experiments and explaining the data retrieved during the experiment active participation in creative, synthetic and integrative activities related to the ecological and sustainability processes understanding of engineering processes and their design.

Teaching unit	Learning outcomes	Evaluation criteria
---------------	-------------------	---------------------

University of Zagreb Faculty of Chemical Engineering and Technology

	- assess the importance of	- explain how and why the
Catalysis	catalytic processes for national	catalyst affects the reaction rate
	economy	- explain the basic principles of
	- compare homogeneous vs.	homogeneous and
	heterogeneous catalysis	heterogeneous catalysis
	- consider the basic	- describe and explain the
	characteristics of the catalyst	different catalytic processes
	- identify key variables	- analyze and explain the
	necessary for the performance	influence of the composition of
	of more active, selective and	the catalyst on its activity,
	stable catalyst	selectivity and stability
	- recognize the relationship between the structural and	- apply different analytical
		methods suitable for the
	chemical properties of the catalyst and its catalytic	characterization of catalysts - develop kinetic models for
	properties	heterogenous catalytic reactions
	- determine the physical,	based on the analysis of the
	chemical, mechanical and	mechanism of the reaction
	catalytic properties of the	- explain the difference between
	catalyst	intrinsic and apparent reaction
	- identify key variables	rate
	necessary for the performance	- examine the impact of inter-
	of more active, selective and	and intraphase diffusion on the
	stable catalyst	reaction rate
	- distinguish kinetic models of	- calculate factor of efficiency
	reactions in homogeneous and	with respect to inter- and
	heterogeneous systems	intraphase diffusion
	- consider differences between	- apply appropriate experimental
	macrokinetics and microkinetics	approach or theoretical criterion
	- select the appropriate	for estimation of influence of
	laboratory reactor to determine	the inter- and intraphase diffusion on the overall reaction
	the kinetics of catalytic reactions	rate
	reactions	Tate
Classification of catalytic	- describe an integrated	- give examples of different
reactors	approach to the development of	designs of reactors that are
	catalysts and reactors	applied in the system of gas-
	- identify factors that influence	liquid-solid
	the choice and performance of	- compare the general features
	the catalytic reactor	of the process that is carried out
	- analyze and compare the	in liquid and gas phase
	performance of the reactor for	- give examples of industrial
	given homogeneous and heterogeneous catalytic	catalytic processes which are carried out in multiphase
	processes	reactors
	- explain methods for separation	- select the appropriate method
	of catalyst and reaction products	of separation of the catalyst with
	on the example of homogeneous	respect to the desired process
	catalytic reactions	r

Specific features of the fixed bed reactors	 analyze the performance of catalytic reactors with fixed bed catalyst explain the advantages and disadvantages of the fixed bed reactor compared to other types of reactors analyze the working principle of adiabatic reactor define the conditions for adiabatic operation of the reactor analyze the flow through a fixed bed reactor explain the factors that lead to deviations from the ideal flow conditions inside the reactor interpret the terms of the axial and radial dispersion 	 give examples of reactors with fixed bed catalyst calculate the temperature sensitivity of reaction give examples of processes that are carried out in adiabatic reactors describe different versions of adiabatic reactor and the principle of their work specify the criteria that determine the maximum allowed pressure drop in the reactor
Moving bed reactors	 analyze the basic principle of work of the moving bed reactors describe the advantages and disadvantages of moving bed reactors analyze the processes of heat and mass transfer in the suspension reactors apply appropriate experimental methods and theoretical correlations for assessment of the mass transport limitations on the overall reaction rate in the slurry reactor 	 summarize the advantages of the moving bed reactors in relation to other types of reactors compare the fixed bed reactors and the moving bed reactors with regards to the pressure drop inside the reactor distinguish and compare different types of suspension reactors and describe how their work