Name of the course	Mathematical modelling
Number of instruction hours	20
Outline of course/module	The course provides students of chemical engineering and engineering chemistry
content	on modelling concepts and computer software and numerical methods. The
	course is based on systems view on modelling of chemical engineering processes.
Description of instruction	Instruction methods are given as oral lectures in a class room, accompanied with
methods	individual problem sessions followed by discussion in a class room, and individual
	consultations. Each student is required to derive and solve a athematical model
	based on his/her experimetal data or from literature, calculate model simulation
	results with tests of model validation and give inclass presentation in a form of 45
	minute seminar with discussion in front of the whole class of students
Description of course/module	The course content is based on exposition of classical methodologies for modelling
requirements	heat and mass transfer with reaction kinetics by lumped models (ordinary
	nonlinear equations) and as distrubuted models with partial differential
	equations. Special emphasis is given on complex behaviour in chemical reactor
	systems such as steady state multiplicita, bifurcation of steady states, limit cycle
	behaviour and deterministic chaos in reaction systems. In the modelling of
	chemical kinetics introduced is the concept of stochastic models and Gillespi
	method of simulation. Also are given new concepts based on artificial intelligence
	algorithms of mathematical modelling, chemical process monitoring and process
	control. Such are the models based on neural networks, fuzzy logic modelling, and
	chemometric models.